
Four-Function Primality Testing

Carl Joshua Quines

August 13, 2019

Here’s a problem. Consider these three numbers:

5923, 524 717, 123 456 789 011.

You have the calculator in the following picture:

You also have a pen and paper. Using these tools, how long would it take you to check
if each of these three numbers are prime? Make a quick guess. An all-nighter? A
whole day? Even longer?

In fact, I claim it’s possible to check if these three numbers are prime, in twenty
minutes in total, and here I’ll talk about how.

Note that the point of this handout isn’t to present a feasible way to do primality
testing by hand! If you wanted to check if these numbers are prime, I recommend
looking them up in Wolfram Alpha W. Instead, the point of this handout is to discuss
some computational number theory. We’ll learn about algorithmic analysis, the
Fermat and Miller–Rabin tests, binary exponentiation, and big integers.

1 Trial division

You might believe that this is feasible for 5923. To check that it’s prime, all we have
to do is to check that no number smaller than it divides 5923. So we divide 5923 by
2, and then we divide it by 3, and then by 4, and so on. If at any point we get an
integer, we know it can’t be a prime.

With this strategy, we need to check at most 5 921 numbers: 2, 3, 4, and so on, up to
5 922. In the worst-case when the number is prime, then we have to check all numbers

https://www.wolframalpha.com/input/?i=is+123456789011+prime

Four-Function Primality Testing Carl Joshua Quines

before we’re sure it’s prime. Even if we can type the numbers in the calculator quickly
enough to do one division per second, it would still take about six thousand seconds,
which is about 1 hour and 40 minutes.

Surely we can do faster! Instead of checking all the numbers up to 5 921, we in
fact only need to check all the numbers up to

√
5923. This is because if there was

a factor d of it larger than the square root, then there’s a factor smaller than the
square root, which is 5923

d . Our calculator has a square root button, so we check that√
5923 = 76.96 . . ., so we only need to check the numbers up to 76.
This is definitely doable in under two minutes! By using the MR button, we don’t

even have to type 5923 every time. We type 5923 once and press M+. Then pressing
MR will bring up the number 5923. So the button presses look like MR, ÷, 2, MR, ÷,
3, and so on. Doing this, we see this number is actually prime.

For 524 717, however, its square root is about 724. So with the one division per
second estimate, it would take twelve minutes, which is a bit too long. But we don’t
have to check all 724 numbers: we only need to check the primes. We don’t have to
check if it’s divisible by 6, because we already checked if it’s divisible by 2.

I magically know that there are 128 primes less than 724. If we had a list of these
128 primes, then doing one division per second, it would take us a little more than two
minutes to check, and that’s fast enough for our purposes. Of course, we need a list of
primes in the first place, which definitely will take more than two minutes to find.

But for the next number, 123 456 789 011, its square root is 351 364, and I magically
know there are 30, 084 primes less than this. So this would definitely not be fast
enough; even finding the primes would take a long time. We’ll need to use a different
strategy after this point.

1.1 Analysis

We’ve discussed three different strategies so far. Each of these strategies involve testing
out possible factors using division, which is why we call these strategies trial division.
If the number we’re testing is N , then we have three strategies:

S1. Test all the numbers up to N .

S2. Test all the numbers up to
√
N .

S3. Test all the primes up to
√
N .

S3 is a bit hard to do in practice, because we’d need to find a list of primes up to
√
N .

For small N this won’t take that long to create ourselves, but when big N this is a
problem. In practice, most people do something in between S2 and S3: we test all
numbers up to

√
N , skipping ones that are obviously composite, like ones divisible by

2, 3, or 5. Let’s call this strategy S2.5:

S2.5. Test 2, 3, 5, and all other numbers up to
√
N that aren’t divisible by 2, 3, or 5.

We can make a table counting the number of divisions, in the worst-case, that we
have to do with each of these strategies. For example, for N = 100, we only have to
do one division. But if we didn’t know that, and we were using Strategy 1, then in the
worst case, we do 98 divisions.

Here’s a table of the worst-case numbers of divisions for N from a hundred to a
billion. I’ve also indicated the time this takes. For the rest of the paper, we’ll make
the assumption that we can do one calculator operation per second. This gives
these times:

2

Four-Function Primality Testing Carl Joshua Quines

N S1 Time S2 Time S2.5 Time

100 98 2 mins. 9 9 secs. 5 5 secs.
1 000 998 16 mins. 30 30 secs. 11 11 secs.

10 000 9 998 3 hours 99 3 mins. 29 29 secs.
100 000 99 998 1 day 315 5 mins. 87 1 min.

1 000 000 999 998 11 days 999 16 mins. 269 4 mins.
10 000 000 9 999 998 3 months 3 161 52 mins. 846 14 mins.

100 000 000 99 999 998 3 years 9 999 3 hours 2 669 44 mins.
1 000 000 000 999 999 998 32 years 31 621 9 hours 8 436 2 hours

So we can see that S1 is very slow! If the number is N , it takes about N seconds to
compute. S2 takes about

√
N seconds, which still takes a pretty long time, and S2.5,

we can see, looks like it’s about 1
4

√
N seconds.

How fast is S2.5, exactly? Well, about half of the integers are odd, and two-thirds
of those aren’t divisible by three, and four-fifths of those aren’t divisible by five. So
the fraction of integers not divisible by 2, 3, or 5 is 1

2 ×
2
3 ×

4
5 = 8

30 . So we’re testing

around 8
30

√
N + 3 numbers.

This is the essence of something computer scientists call algorithmic analysis. In
computer science, we call our strategies algorithms instead, and we’re analyzing how
long each algorithm would take depending on the size of the input. In typical analysis,
we usually treat a single operation, like an addition, subtraction, multiplication or
division, as a single time step, and then analyze how long it takes as a function of N .

One important idea in analyzing algorithms is something called big O notation.
Let’s go back: S1 takes around N steps, S2 takes around

√
N steps, and S2.5 takes

around 8
30

√
N + 3 steps. When we take the big O notation, we ignore the constants.

So we say that S1 is O(N), S2 is O(
√
N), and S2.5 is also O(

√
N).

Why is it okay for us to ignore the constants? Sure, S2.5 is faster than S2, but only
four times faster, what we call a constant improvement. Most of the time, constant
improvement isn’t that hard to achieve. If we wanted to make S2 four times faster, we
can just add more people. Four people doing S2 takes about the same time as one
person doing S2.5, no matter how large N is.

On the other hand, the difference between S1 and S2 is genuinely different. A single
person doing S2 beats 10 people doing S1 for N > 100. A single person doing S2 beats
100 people doing S1 for N > 10 000. A single person doing S2 can even beat 1 000
people doing S1 for N > 1 000 000!

It doesn’t matter how many calculators you have: a faster algorithm will win.

3

Four-Function Primality Testing Carl Joshua Quines

It doesn’t matter how many people you have doing S1, or how much constant
improvement you can do to S1: for large enough N , S2 will certainly be faster.

Computer scientists love big O notation because it’s a quick way to state this. It’s
also why people care about improving algorithms in terms of big O, rather than just
constant improvement, because for large enough N , it’s often the deciding factor.

2 Fermat test

Can we go faster than O(
√
N), then? In fact, we can, using something called the Fermat

test. Recall that Fermat’s little theorem says that if p is a prime, then ap−1 ≡ 1
(mod p) when a 6≡ 0 (mod p). So if a number p is prime, then this congruence should
be true for any a that we pick.

Now let N be any integer, and let a 6≡ 0 (mod N). If aN−1 6≡ 1 (mod N), then
we’re guaranteed that N can’t be prime. (Because otherwise, it would be equal to 1.)
We call a a witness that N is composite. And sometimes it is equal to 1, in which
case we call a a liar, like it’s misleading us to think that N is prime.

It turns out that, for “most” numbers, there are few liars and more witnesses. For
example, take m = 15. When a ≡ 1 or a ≡ −1, then a14 ≡ 1, and we know in advance
that these will be liars. Ignoring these liars, there are only two other liars, which are 4
and 11:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a14 mod 15 1 4 9 1 10 6 4 4 6 10 1 9 4 1

Here’s the same thing for m = 21, where there are also only two non-obvious liars:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
a20 mod 21 1 4 9 16 4 15 7 1 18 16 16 18 1 7 15 · · ·

On the other hand, for an actual prime, all of the numbers will be 1:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a16 mod 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

So this is the Fermat test. We pick a number a that isn’t 1 or N − 1, raise it to
the power N − 1, and then check if it’s 1 modulo N . If it isn’t, we know it’s definitely
composite. If it is, then we guess that it’s prime—it’s not assured, but it should be
somewhat likely. If we want to be more sure, we can run the Fermat test several times
with other choices of a until we’re sure enough.

As an example, take 1105. We pick 2. Then 21104 ≡ 1 (mod 1105), through some
computation we’ll talk about later. So it’s looking like it’ll be a prime, but let’s try
a few more just to be safe. If we pick 3, then 31 104 ≡ 1 (mod 1105), looking good.
But then if we pick 5, then 51 104 ≡ 885 (mod 1105). So 5 is a witness that 1105 is
composite, and 2 and 3 were actually liars.

2.1 Probabilistic arguments

In fact, if there is a witness to a number N that’s relatively prime to it, then it can be
proven that more than half of the choices for a are witnesses as well. Here’s a quick

4

Four-Function Primality Testing Carl Joshua Quines

sketch of the proof. Let w be a witness. So wN−1 6≡ 1 (mod N). Similarly, if ` is a
liar, then `N−1 ≡ 1 (mod N). Observe that w` is now a witness, because

(w`)N−1 ≡ wN−1`N−1 ≡ wN−1 6≡ 1 (mod N).

So if you multiply w by a liar, you get a witness. And if you multiply by a different
liar, you get a different witness.1 So each liar, multiplied to w, gives us a different
witness. Therefore, the number of witnesses is at least the number of liars! And since
each number up to N is either a liar or a witness, the number of witnesses is at least
half of N .

So if there does exist a relatively prime witness, then we can be very confident
that N is prime after trying sufficiently many numbers. In this case, if we picked a
randomly, the probability it’s a liar is less than 1

2 . If we ran the test ten times, the

probability we get a liar every time is
(
1
2

)10
, which is incredibly small. It’s way more

likely that one of our random choices gives us a witness.

It’s more likely to flip ten coins and get tails each time.

However, these arguments apply only if a relatively prime witness exists in the first
place. In fact, there are some bad numbers where none of these exist, and there are
fewer witnesses. Worse, there are numbers where no witnesses exist, and all of the
choices are actually liars!

An example of such a number is 561, where we claim that a560 ≡ 1 (mod 561) for
all a 6= 0. We can factor 561 = 3× 11× 17, so by the Chinese remainder theorem, we
only need to show that

a560 ≡ 1 (mod 3), a560 ≡ 1 (mod 11), a560 ≡ 1 (mod 17).

But each of these are true by Fermat’s little theorem. For example, for 11, we have

a560 ≡
(
a10

)56 ≡ 156 ≡ 1 (mod 11),

and we can check that something similar works for 3 and 17. Such numbers where
all the choices are liars are called Carmichael numbers, and the Fermat test can’t
distinguish between primes and Carmichael numbers.

1This is where we use the fact that w is relatively prime to N . Suppose two products are the same,
like w` ≡ w`′ (mod N). Then we can cancel by w because it’s relatively prime to N . Thus ` ≡ `′

(mod N) and they are actually the same liar, not different liars.

5

Four-Function Primality Testing Carl Joshua Quines

2.2 Doing modulo quickly

Suppose we were satisfied with this. After running the Fermat test on N like ten times,
we’d be reasonably confident that N is either a prime or a Carmichael number. How
fast can we compute this on a four-function calculator?

Let’s recap the steps of the Fermat test. We have a number N that we want to
check is a prime or Carmichael number. Then we:

1. Pick a random number 1 < a < N − 1.

2. Find aN−1 mod N .

3. If we don’t get 1, we say N is composite.

4. Otherwise, we repeat the test, say around ten times. If we get 1s every time, it’s
maybe prime or a Carmichael number.

How quickly can we do a single test on a calculator? The main problem is computing
aN−1 modulo N . For most N , the problem is even getting it to fit in the calculator in
the first place! Even for something as small as N = 47, 246 is already too big to fit in
our twelve-digit calculator.

The first trick is that we have to reduce modulo N every time we multiply.
So for example, suppose we pick 2. Then we multiply it by itself until we get
239 = 549 755 813 888, which is twelve digits. If we multiply by 2 again, it won’t fit on
the calculator anymore.

So we instead take it modulo N . The result will have to be smaller than N , and if
N is less than twelve digits, we can multiply by 2 again and it’ll fit. Every time we’re
going to hit something that doesn’t fit, we take modulo N before continuing.

Unfortunately, our calculator does not have a modulo function, so we’ll have to
figure out how to do modulo quickly. We can use the memory to reduce the number of
button presses we have to use:

1. Load N in memory. (Press MC to clear the memory, type N , press M+.) For
the rest of the calculation, the memory will always store M .

2. Begin with a on the calculator. Write it down on the sheet of paper.

3. Divide by N by pressing ÷, then MR, then =. Press I repeatedly until the
decimals are gone, giving

⌊
a
N

⌋
.

4. Multiply by N by pressing ×, then MR, then =, giving
⌊
a
N

⌋
N .

5. Press ± to switch the sign. Then add a, written down earlier, to get a−
⌊
a
N

⌋
N ,

which is a mod N .

So we have a fast way of finding something modulo N , which takes around three
seconds. The real bottleneck here is how fast you can write down a on the sheet of
paper, so you’d have to learn to write numbers quickly.

We still have a different problem. We’d need to multiply a by itself N − 1 times in
order to find aN−1 mod N . So finding this would still take O(N). This is slower than
trial division, which we know to be O(

√
N).

6

Four-Function Primality Testing Carl Joshua Quines

2.3 Exponentiating quickly

But can we go faster? The problem of computing asomething mod N is known as
modular exponentiation. The second trick is that we can actually solve this
problem in O(log2N) using an algorithm called binary exponentiation.

As the name suggests, it involves using binary. We can represent any number, like
37, as a sum of powers of two, its binary representation. So 37 = 32 + 4 + 1. And
the idea is, we can find a37 by multiplying a32, a4, and a1. So we would only need to
find a rasied to powers of two, which we can do through repeated squaring.

Here’s an example. Let’s say we’re computing 1381 mod 1000. Then we compute
132 ≡ 169 (mod 1000). Then:

134 ≡
(
132

)2 ≡ (169)2 ≡ 28 561, (mod 1000)

138 ≡
(
134

)2 ≡ (561)2 ≡ 314 721, (mod 1000)

1316 ≡
(
138

)2 ≡ (721)2 ≡ 519 841. (mod 1000)

We can continue this way to fill up the following table:

k 1 2 4 8 16 32 64

13k mod 1000 13 169 561 721 841 281 961

Then
1381 ≡ 1364 × 1316 × 131 ≡ 961× 841× 13 ≡ 613 (mod 1000).

And the advantage of our previous method of taking modulo N , which requires writing
a on a sheet of paper, can now be used to our advantage! Let 2k be the largest power
of two that is at most N − 1. Then our new method for finding aN−1 mod N is now:

1. Compute a2 mod N . While taking modulo N , we write the result down.

2. Compute a4 = (a2)2 mod N ; note that we also write it down.

3. Compute a8 = (a4)2 mod N , which we also write down.

4. And so on until a2
k

=
(
a2

k−1
)2

mod N , all of which we write down.

5. Then express N − 1 in binary. We’ve conveniently written down the values of
a2

i
mod N earlier, so we can use these and the method shown previously, to find

aN−1 mod N .

2.4 An example

Let’s run a Fermat test with our four-function calculator, using 524 717 as N . We
start by clearing the memory by pressing MC, then type 524 717, then M+ to load it
into memory.

Then we convert N − 1 to binary. Since 524 717 is already on my screen, I subtract
1 to get 524 716. Then I press ÷, then 2 to get 262 358. No remainder, so the last digit
is a 0. I divide by two again to get 131 179, no remainder, so the second-to-last digit is
also 0. Then I divide by two again to get 65 589.5, which has a remainder, so the next
digit is 1. Then I press I to remove the .5 before dividing by two again. The process
of converting to binary is shown in the following table:

7

Four-Function Primality Testing Carl Joshua Quines

262 358 131 179 65 589.5 32 794.5 16 397 8198.5 4099 2049.5 1024.5

0 0 1 1 0 1 0 1 1

I then recognize that 1 024 is a power of two! So conveniently enough, the rest of the
right column will be ten 0s followed by a 1, without having to do any more divisions.

On the sheet of paper, I only have the bottom row written, and it’s written vertically,
going downward. This is the binary expansion in reverse. The actual binary expansion
is 524 716 = 10 000 000 000 110 101 1002, but the reverse binary expansion is actually
more useful for us in this case.

Then we begin with the actual Fermat test. We’ll pick a = 2. I write down 2 below
the first 0 on my sheet of paper, then repeatedly square it. I don’t actually have to
take the modulo until it overflows. My sheet of paper now looks like:

0 2
0 4
1 16
1 256
0 65 536
1
...

...

I can’t square 65 536 in my head, so I turn to the calculator. I type in 65 536, hit ×,
type in 65 536, then do the steps to take the modulo. I get 158 651. So I write this
down underneath the next column, and I repeat this process about fourteen more
times to fill in the rest of the table:

...
...

...
...

0 65 536 0 274 380
1 158 651 0 88 108
0 514 745 0 365 366
1 269 271 0 519 880
1 426 947 0 309 021
0 203 311 0 206 894
0 256 329 0 288 527
0 18 218 1 428 245
...

...

And now the reverse binary expansion becomes helpful, because to find the value of
2524 716 mod 524 717, I’ll multiply all the entries corresponding to 1s:

16× 256× 158 651× 269 271× 426 947× 428 245 = 240 181.

So 2524 716 ≡ 240 181 (mod 524 717). It’s not 1, and thus 2 is a witness that 524 717 is
composite, and we don’t need to run any more tests. In fact, 524 717 = 647× 811, so
trial division would take a long time before finding out that this number is composite.
On the other hand, a single Fermat test showed us this.

2.5 Analysis

How long does a Fermat test take? The slow part is squaring and then taking modulo
N for k times, where 2k is the largest power of two less than N . Each time we square

8

Four-Function Primality Testing Carl Joshua Quines

and modulo N takes only a few seconds, if we write fast enough. And the number of
times we do this is k. Since 2k < N , we get k < log2N . Ignoring the constants, like
we always do for big O notation, this algorithm is O(log2N).

How fast is this? Well, for 524 717, k is 18. Running the Fermat test once would
take around a minute and a half, by our standard of one operation per second. So
running ten of them would take around fifteen minutes. The great thing about this
is that even for large numbers like 123 456 789 011, k is still 36. Even if the number
became a million times bigger, k only doubled!

Using this estimate, here’s a table showing how long it would take to run ten Fermat
tests on a number of about size N , compared to our trial division strategies from
earlier:

N S1 S2 S2.5 10× Fermat

100 2 mins. 9 secs. 5 secs. 5 mins.
1 000 16 mins. 30 secs. 11 secs. 7 mins.

10 000 3 hours 3 mins. 29 secs. 10 mins.
100 000 1 day 5 mins. 1 min. 13 mins.

1 000 000 11 days 16 mins. 4 mins. 15 mins.
10 000 000 3 months 52 mins. 14 mins. 19 mins.

100 000 000 3 years 3 hours 44 mins. 21 mins.
1 000 000 000 32 years 9 hours 2 hours 24 mins.

Even if ten Fermat tests is slower for smaller numbers, we see that it’s actually better
for larger numbers! This is the idea we’ve been talking about earlier: a strategy that’s
O(log2N) will always beat any O(

√
N) strategy, when N is large enough.

The O(
√
N) strategy might be better for small N , like we see here. But as N grows

larger, we need to start worrying about our strategy and how fast it is.

3 Miller–Rabin test

The Fermat test is good, but it’s not the best test. It can’t tell the difference between
primes and Carmichael numbers, and there are certain really bad prime numbers that
have lots of liars. There’s an improvement called the Miller–Rabin test which is
based on the Fermat test.

If a number p is prime, how many solutions are there to x2 ≡ 1 (mod p)? From the
onset, we see there are two solutions, −1 and 1, but are there more? In fact, modulo p,
a polynomial of degree d can only have at most d roots, a result known as Lagrange’s
theorem. In this particular case, we can factor it as

x2 − 1 ≡ (x− 1)(x + 1) (mod p) =⇒ p | (x− 1)(x + 1),

and as p is a prime, either p | x− 1 or p | x + 1. This means x can only be −1 or 1
modulo p. In other words, the square root of 1, when N is a prime, is 1 or −1.

But when about the non-prime case? Say x2 ≡ 1 (mod 105). By the Chinese
remainder theorem, this is equivalent to solving

x2 ≡ 1 (mod 3), x2 ≡ 1 (mod 5), x2 ≡ 1 (mod 7).

Since each individual congruence has two solutions, the original must have 2×2×2 = 8
different solutions modulo 105. So if x2 ≡ 1 (mod N) has solutions other than −1 and
1, we’re guaranteed that N is composite.

9

Four-Function Primality Testing Carl Joshua Quines

And the way to find such solutions is to go back to the Fermat test. Recall that we
call a a liar if aN−1 ≡ 1 (mod N). In this case, we’re not sure if N is a prime or not.

But if N was a prime, then by the previous remark, a
N−1

2 ≡ −1 or 1 (mod N). If it
wasn’t, then we would be guaranteed that N is composite!

Let’s see this for N = 15. We earlier saw that there were two liars other than −1
and 1, which are 4 and 11. That is, 414 ≡ 1114 ≡ 1 (mod 15). But what happens if we
look at 47 or 117?

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a14 mod 15 1 4 9 1 10 6 4 4 6 10 1 9 4 1
a7 mod 15 1 8 12 4 5 6 13 2 9 10 11 3 7 14

Miraculously, they’re not −1 or 1! So 4 and 11 are now witnesses that 15 is composite!
What about for 21, where we had the liars 8 and 13? What are 810 mod 21 and
1310 mod 21?

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
a20 mod 21 1 4 9 16 4 15 7 1 18 16 16 18 1 7 15 · · ·
a10 mod 21 1 16 18 4 16 15 7 1 9 4 4 19 1 7 15 · · ·

So that didn’t work; we see that 8 and 13 are still liars. But we can apply the same

argument again: if a
N−1

2 ≡ 1 (mod N), then we can check a
N−1

4 mod N . If N was a
prime, it would be −1 or 1, but if not, we know it’s composite. Let’s see:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
a20 mod 21 1 4 9 16 4 15 7 1 18 16 16 18 1 7 15 · · ·
a10 mod 21 1 16 18 4 16 15 7 1 9 4 4 19 1 7 15 · · ·
a5 mod 21 1 11 12 16 17 6 7 8 18 19 2 13 13 14 15 · · ·

Aha! Now 8 and 13 are witnesses that 21 is composite too! In general, we can inspect

aN−1, a
N−1

2 , a
N−1

4 , and so on until we can’t divide the exponent by 2 any more.
Let’s do another example, for 221. Note that 174220 ≡ 1 (mod 221). And also

174110 ≡ −1 (mod 221). Then taking the square root another time won’t tell us
anything about 221; we only know something about it when we’re taking the square
root of x2 ≡ 1 (mod N). So 174 isn’t a witness.

So let’s try another base, like 103. We compute that 103220 ≡ 1 (mod 221). Then
103110 ≡ 1 (mod 221) as well. But then 10355 ≡ 103 (mod 221), so 103 is a witness
that 221 is a composite number!

Let’s summarize our current procedure. After picking a random a, neither equal to
1 or −1, we then:

1. Find the value of aN−1 mod N . If it’s not 1, N is composite. Otherwise, we
continue.

2. Find the value of a
N−1

2 mod N .

• If it’s not 1 or −1, N is composite.

• If it’s −1, there’s no point to taking more square roots, so we stop and N
is maybe prime.

• Otherwise, it’s 1, and we take continue by taking the square root.

10

Four-Function Primality Testing Carl Joshua Quines

3. Find the value of a
N−1

4 mod N .

• If it’s not 1 or −1, N is composite.

• If it’s −1, we stop and N is maybe prime.

• Otherwise, we continue.

4. We keep going like this until we can’t take square roots any more. If we didn’t
say N is composite, we say N is maybe prime.

3.1 Going backwards

The Miller–Rabin test is this but done backwards. This is better so we don’t have
to do binary exponentiation with each of N − 1, N−1

2 , N−1
4 , and so on.

So let’s say that the most you can get by repeatedly halving N − 1 is d. This means
that d is odd. Then let’s write N − 1 = 2rd. Then the numbers we’re looking at are

ad, a2d, a4d, . . . , a2
r−2d, a2

r−1d, a2
rd.

(Note that this list of numbers is the same as

a
N−1
2r , a

N−1

2r−1 , a
N−1

2r−2 , . . . a
N−1

4 , a
N−1

2 , aN−1,

in that order.) What would this list look like if N was a prime? Based on our previous
procedure, we have two possible sequences. It would look like either

1, 1, 1, . . . , 1, or ?, ?, ?, . . . , ?,−1, 1, 1, 1, . . . , 1,

where the question marks are some numbers. You should stop and check this: if we did
the previous procedure on this sequence, we would say N is maybe prime. Therefore,
if we get anything other than this above sequence, we’re now guaranteed that N is
composite! So the Miller–Rabin test is done as:

1. Find the value of ad mod N . If it’s 1, then we’re going to get the first sequence
above. We stop and say N is maybe prime.

2. Otherwise, find a2d, a4d, . . . , a2
r−1d, each modulo N . If any of these are −1, we’re

going to get the second sequence above. We stop and say N is maybe prime.

3. Otherwise, we’re sure that N is composite.

As an exercise, think about why we don’t need to check if a2
rd is −1. Like in the

Fermat test, we call a a witness for N if it outputs composite for N , and a liar if it
outputs maybe prime if N is actually composite.

3.2 Analysis

How good is the Miller–Rabin test? Both the Fermat test and the Miller–Rabin
test differ from trial division in that they’re both probabilistic. That means that
it doesn’t guarantee us that a number is prime, but only tell us that there’s a high
probability it is a prime. So there’s a chance that the test gives us a false positive.

Unlike the Fermat test, however, the Miller–Rabin test has better odds. It can be
shown that for any composite N , at least 3

4 of the choices for a are witnesses that it’s

11

Four-Function Primality Testing Carl Joshua Quines

composite. The argument is much more involved than the one for the Fermat test, so
we won’t go through it here.

Note, already, the difference here. Unlike the Fermat test, our guarantee doesn’t
rely a witness existing in the first place. It’s true for all composite N , so there won’t
be any bad cases, like the Carmichael numbers. It’s also a much better guarantee:
running the test ten times gives a

(
1
4

)10
chance of a false positive.

It’s more likely to roll seven dice and get one each time.

In fact, when N is small, computer searches have verified that a small set of as serve
as witnesses for all N up to this size. For example, when N < 1 , 373 653, then it’s
enough to test only a = 2 and a = 3! The fact that we only need to check two values
of a to verify everything up to a million should be very, very surprising, compared to
our estimate of

(
1
4

)2
. This means that for most composite numbers, the number of

liars is much less than 1
4 that number.

A good reference for small sets of numbers that verify everything is in https:

//miller-rabin.appspot.com/. The way to interpret this table is that the “best
solution” column gives the largest N it works for, and the bases is the set of as you run
Miller–Rabin on. For our purposes, there’s a test that checks for all N < 154 639 673 381,
using only three as:

15, 176 006 322, 4 221 622 697.

An easier list to memorize would be: for everything up to ten digits, 2, 7, and 61; for
everything up to twelve digits, 2, 3, 5, 7, and 11.

This is much better than doing the Fermat test, because we have a guarantee that
it’ll work for small numbers. It’s faster too, since we have to run a Miller–Rabin test
maybe twice or thrice, rather than ten times. Compare this to our previous tests:

N S1 S2 S2.5 10× Fermat 2× MR 3× MR

100 2 mins. 9 secs. 5 secs. 5 mins. 1 min. 1 min.
1 000 16 mins. 30 secs. 11 secs. 7 mins. 1 min. 2 mins.

10 000 3 hours 3 mins. 29 secs. 10 mins. 2 mins. 3 mins.
100 000 1 day 5 mins. 1 min. 13 mins. 2 mins. 4 mins.

1 000 000 11 days 16 mins. 4 mins. 15 mins. 3 mins. 4 mins.
10 000 000 3 months 52 mins. 14 mins. 19 mins. — 5 mins.

100 000 000 3 years 3 hours 44 mins. 21 mins. — 6 mins.
1 000 000 000 32 years 9 hours 2 hours 24 mins. — 7 mins.

12

https://miller-rabin.appspot.com/
https://miller-rabin.appspot.com/

Four-Function Primality Testing Carl Joshua Quines

The 2× MR column shows how long it would take to do Miller–Rabin using 2 and 3,
and the blank entries indicate that 2× MR isn’t guaranteed to work for these numbers.
The 3× MR column shows how long it would take to run it on 2, 7, and 61.

We see that the improvement isn’t spectacularly big. Both the Miller–Rabin test
and the Fermat test are O(log2N), but the Miller–Rabin test is around three times
faster for these numbers because we have to run it two or three times, instead of ten.

So we get a constant improvement doing the Miller–Rabin test over the Fermat
test. But we still care about Miller–Rabin because it’s more reliable than the Fermat
test. The chance we get a false positive is smaller, and it works with Carmichael
numbers. Another reason to care about it is because people have published short lists
of witnesses that work for lots of numbers, which make it practically useful.

3.3 Big integers

To test that N = 123 456 789 011 is prime, we know that we only need to run three
Miller–Rabin tests. We’ve already discussed how to do modulo quickly, and there’s no
problem here. But if we try to do exponentiation, we quickly run into a problem: if a
is large, then a2 won’t fit in the calculator. Even if a2 mod N will fit in the calculator,
a2 will overflow—the answer will be too big to fit.

In particular, we need to figure out this problem: given a, which can be up to twelve
digits long, how do we find a2 mod N? We’ll split this problem into two parts. First
is finding a2, then finding it mod N .

Finding a2 is the less tedious part. We can split up a as 106 · b + c, where both b
and c have six digits. Then

a2 =
(
106 · b + c

)2
= 1012 · b2 + 106 · 2bc + c2.

We can compute both b2 and c2 using the calculator. We can also compute 2bc, but
we have to be careful with overflow. If bc happens to be larger than 5 · 1011, then 2bc
would overflow. The trick is to remove the last digit first by pressing I. For example,
to compute 878 939 830 554× 2, we do

878 939 830 554 I 87 893 983 055 × 2 = 175 787 966 110,

and the final answer must be what we got, times ten, plus twice the removed digit.
So the final answer is 1 757 879 661 108. We can then add all the intermediate results
1012 · b2, 106 · 2bc, and c2, on paper. This is not too hard of a step; if you really wanted
to, you can split the sum into twelve-digit parts which you can add with the calculator.

We now have the next part of the problem. We have some number a2, possibly up
to 24 digits, and we need to find it modulo N . We’re going to find it digit-by-digit,
from left-to-right. We start with the first twelve digits, and find it mod N . Then at
each step, we append the next digit, find it mod N again, repeating until we’re done.

For example, suppose our calculator had three digits instead of twelve, and we’re
finding a large number like 123 456 modulo 71. What we do is:

• Find 123 mod 71, which is 52.

• We type the next digit, giving us 524. Then we find 524 mod 71, which is 27.

• Type in 5, getting 275. Then 275 mod 71 = 62.

• Finally, 626 mod 71 = 58.

13

Four-Function Primality Testing Carl Joshua Quines

And indeed, we can check that 123 456 mod 71 = 58. To convince yourself this works,
consider what it’d look like if you didn’t take the modulo every time. Then you get
the number itself. So intuitively, taking the modulo every time wouldn’t change the
final value. You can also try to show for yourself that this is true algebraically.

The trouble is that we might not be able to add in the next digit, since N has
twelve digits itself. When we take it modulo N , it’s possible that we might end up
with something a little larger than 1011, so we can’t directly append the next digit.

To deal with this, suppose that the current number is a, and we want to append the
digit b. In other words, we want to compute (10a+ b) mod N . The trick is to compute
10a mod N as 2(5a mod N) mod N . Then we can add b, and continue with the rest
of the algorithm.

One final optimization we can make: the modulo operation we gave earlier is
unnecessary in this case. Since the intermediate results are pretty close to N anyway,
it would be faster to just subtract N repeatedly. We can hit −, then MR, then =.
Then repeatedly pressing = will repeat the previous operation, and we can eyeball
when we’re done. That way, our square and modulo operation would be much faster,
since we don’t have to write the number itself. This speeds it up to around ten seconds
each time.

3.4 As promised

Time to deliver my promise. I claimed we could check if each of the three numbers in
the introduction are prime in twenty minutes in total. So here:

• For 5923, we trial divide the primes until
√

5923 = 76. It’s not hard to memorize
the primes up to this point. This takes around 20 seconds.

• For 524 717, we do two Miller–Rabin tests. As 219 > 524 717, converting to
binary will take around 20 seconds, since we have to halve the number 19 times.
In a single Miller–Rabin, we have to square and take the modulo 19 times as
well, and in total that should take around 100 seconds. Doing this twice gives a
little over 4 minutes.

• For 123 456 789 011, we do three Miller–Rabin tests. Converting to binary would
take around a minute, since we halve 36 times. In a single Miller–Rabin, we
square and take the modulo 36 times as well. The square and modulo operation
takes around 10 seconds. So a single Miller–Rabin takes 5 minutes. Doing this
thrice gives 15 minutes.

So our grand total is 20 minutes; even if you add some margin, it’ll take maybe
half an hour. While there is no way I would actually want to try this out, this at least
shows it’s possible to do this if you really had to. In the words of Henry Cohn, one of
the PROMYS W lecturers: “Suppose your evil twin locked you in a room, and would
only let you out only after you finished this calculation. You wouldn’t like it, but it’s
certainly possible for you to finish in a reasonable time.”

4 On computers

Surprisingly enough, much of the concepts we’ve gone over are very similar to how
computers do primality testing. In this section, we talk about what primality test-

14

https://promys.org

Four-Function Primality Testing Carl Joshua Quines

ing algorithms people use and care about, how the modulo operation and modular
exponentiation are done, and how computers work with big integers.

4.1 Primality testing

How does a library like SymPy W test if a number is prime? For small numbers (up
to 264), the general approach is something similar we already do:

1. Do trial division by primes up to 47.

2. If the number’s at most than 23 001, do a Fermat test with base 2. We check
that it’s not one of five false positives: 7957, 8321, 13 747, 18 721, 19 951.

3. Do a Miller–Rabin test, with the bases taken from https://miller-rabin.

appspot.com/. This is guaranteed to give the correct answer.

For larger numbers, SymPy does something called the Baille–PSW test, which is
a Miller–Rabin test with base 2, followed by the Lucas probable prime test. Here’s
a quick explanation of the Lucas test. Here are the first few Fibonacci numbers,
defined by the recurrence Fn+1 = Fn + Fn−1:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

One of its properties is that when p ≡ 1, 4 (mod 5), then p | Fp−1, and when p ≡ 2, 3
(mod 5), then p | Fp+1.

2 So here, 7 | F8, which is 21, and also 11 | F10, which is 55.
This gives us a probabilistic test to check if a number N is prime: if N - FN±1, then
N must be composite.

The Lucas probable prime test uses the same concept as this, except with
sequences known as Lucas sequences. So the Lucas test is another probabilistic test
as well. The Baille–PSW test, being a combination of Miller–Rabin and Lucas, is thus
a probabilistic test. There is no known false positive of the Baille–PSW test, but it is
believed there are infinitely many of them.

4.2 Working with modulo

The technique we used, binary exponentiation, is a standard algorithm for modular
exponentiation. The Python implementation W of this, starting line 4271, uses a
specific implementation called left-to-right binary exponentiation.

The way it works is a bit different from what we did. Say you’re computing 1381

mod 1000, and note 81 = 10100012. Then you square and take the modulo as normal,
but whenever you hit a digit that’s 1, you multiply by 13. So for example:

812 1 0 1 0 0 0 1

13 169 293 849 801 601 613

Consider the third entry here. The previous entry is 169, so we square it and take
mod 1000 to get 561. The digit above is 1, so we also multiply by 13 and take mod
1000 to get 293. The fourth, fifth, and sixth digits are all zero, so we just square and
take modulo as normal. Then the seventh digit is 1, so we square and multiply by 13.
The square is 201, and multiplying by 13 gives us 613.

2The first proof I could find on Google is on the Mathematics Stack Exchange W.

15

https://docs.sympy.org/latest/_modules/sympy/ntheory/primetest.html
https://miller-rabin.appspot.com/
https://miller-rabin.appspot.com/
https://github.com/python/cpython/blob/0378d98678f3617fd44d9a6266e7c17ebce62755/Objects/longobject.c
https://math.stackexchange.com/a/696599/

Four-Function Primality Testing Carl Joshua Quines

To convince yourself that this works, convince yourself that the entries on the bottom
row, from left to right, are 131, 1310, 13101, 131010, and so on, where the exponents are
written in binary. Squaring adds an extra 0 to the end, and multiplying by 13 changes
this to a 1. So at the end, we’ve constructed 85 in binary in the exponent!

As to how modulo itself is computed, most CPUs have a dedicated instruction for
computing both division and remainder. The equivalent in our case would be if our
calculator had a dedicated button for computing modulo. I’m not aware on the details
of how CPUs do division, so I can’t realy speak about this.3

4.3 Big integers

Most CPUs are 64-bit. This means that arithmetic can be done with numbers up to
64 bits long. This would be like if our calculator had 18 digits instead of 12 digits.
This means that when working with integers beyond this limit, clever tricks have to
be used to be able to do arithmetic.

The main ideas are similar to what we did. When we broke up integers to 6-digit
blocks, with a computer we would break up to 32-bit blocks instead. For multiplying,
we multiply the blocks in a way similar to how it is taught in school, which is called
long multiplication. Similarly, modulo is done through division with remainder in a
process called long division. Both operations are O(log2N).

There are faster ways to multiply, like Karatsuba multiplication, which is
O(log1.585N). The main idea goes like this. Say you’re working in base 106. Then
multiplying 106a + b and 106c + d means evaluating

1012ac + 106 (ad + bc) + bd,

which has four products. The trick is that we can reduce this to three products instead,
by doing

ad + bc = (a + c)(b + d)− ac− bd.

That way we only have to multiply thrice: (a + c)(b + d), ac, and bd, rather than four
times. However, the constant factor is large enough that this really is only better when
N is huge. For example, Python switches to Karatsuba only when N is around seven
hundred digits.

Acknowledgments

Thanks to Henry Cohn and Hahn Lheem for inspiring me to write this. Hahn Lheem
corrected several typos, and Devansh Sehta provided a crucial simplification for the big
integer computations. The main references used in preparing this were Keith Conrad’s
notes on the Fermat test W and the Miller–Rabin test W.

Have a faster way for four-function primality testing, or a way to make one of the
steps here faster? Or did you take a video of yourself actually trying this out? Let me
know at cj@cjquines.com W.

3I also couldn’t find a good source explaining it, so if you find one, send it my way.

16

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/fermattest.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
mailto:cj@cjquines.com

	Trial division
	Analysis

	Fermat test
	Probabilistic arguments
	Doing modulo quickly
	Exponentiating quickly
	An example
	Analysis

	Miller–Rabin test
	Going backwards
	Analysis
	Big integers
	As promised

	On computers
	Primality testing
	Working with modulo
	Big integers

