9th Lord of the Math Solution Booklet

Saint Stephen's High School

December 3, 2016

9th Lord of the Math Solution Booklet

Saint Stephen's High School

December 3, 2016

Contributors

Balete Immanuel Josiah
 Balete Nathanael Joshua
 Chuatak John Thomas
 Co Randall Lewis
 Sison Richie Rainier
 Sy Julius Vincent
 Tan Hans Markson
 Tiu Benedict Ryan
 Yu Marc Adrian

DISCLAIMER: Not all of the problems here are original. Some are lifted or edited from previous competitions or textbooks. All information provided here is for educational purposes only.

Team Finals

TF1 Problem The Russian Cyrillic alphabet has 33 letters, 21 of which are consonants and 10 are vowels. The remaining two letters do not fit in either category, and are called "signs". The two signs cannot appear at the beginning of a word and can only follow a consonant. How many three-letter Russian "words" (strings of letters) with at least one vowel satisfy the above condition?

Answer 21370

Solution Denote by C a consonant, V a vowel, and S a sign. Then only strings with length three that are of the following types satisfy the conditions: $V V V, V V C$ and permutations, $V C C$ and permutations, $V C S$, and CSV. There are $10^{3}=1000$ strings of the form $V V V, 21 \times 10^{2} \times 3=6300$ strings of the form $V V C$ (including permutations), $21^{2} \times 10 \times 3=13230$ strings of the form VCC (including permutations), and $21 \times 10 \times 2 \times 2=840$ strings of the form $V C S$ or CSV , giving a total of 21370 possible strings.

TF2 Problem Taxicab Geometry is one kind of non-Euclidean geometry where all points are in the $x y$-plane and the distance function is defined as the sum of the positive differences of their corresponding
x-, and y-coordinates. For example, the distance between $(1,2)$ and $(.5,-6)$ is 8.5 . Find the area of the circle in a taxicab geometry centered at the origin with radius 50 units. A circle is defined as the set of points that are equidistant from its center.

Answer 5000 square units
Solution It can be easily verified that this circle has the shape of a square, with vertices $(\pm 50,0)$ and $(0, \pm 50)$. Therefore, the area is $50^{2} \cdot 2=5000$ square units.

TF3 Problem ISBNs are numbers that are used to identify most published books. It consists of ten digits, where the first nine digits a_{1} to a_{9} range from 0 to 9 , and the tenth digit a_{10} from 0 to 10 . The first nine digits give information about the book for identification, and the tenth digit is a "check digit" to check if the first nine digits might be wrongly encoded. The check digit a_{10} is chosen given the first nine digits such that

$$
\sum_{i=1}^{10} i a_{i} \equiv 0 \quad(\bmod 11)
$$

If the first nine digits are $0-825417-39$, find the check digit.

Answer 8

Solution Expanding the given condition, we have

$$
\begin{aligned}
& 0(1)+8(2)+2(3)+5(4)+1(5)+4(6)+7(7) \\
& \quad+8(3)+9(9)+10\left(a_{10}\right)=217+10 a_{10} \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Since $217 \equiv 8(\bmod 11)$, then $a_{10}=8$ because $80+8 \equiv 0(\bmod 11)$.
TF4 Problem For a positive integer n, let r_{n} be a positive integer from 1 to 9 inclusive such that $n \equiv r_{n}(\bmod 9)$. Define

$$
\mathcal{A}=\left\{n \leq 1000 \mid n \equiv 0 \quad\left(\bmod r_{n}\right)\right\} .
$$

Find the cardinality of \mathcal{A}.

Answer 527

Solution It is easy to see that for all positive integers $x \leq 1000$ such that $r_{x}=1,3$, or 9 , then $x \in \mathcal{A}$. There are 112 numbers that are 1 $(\bmod 9), 111$ that are $3(\bmod 9)$, and 111 that are $9(\bmod 9)$.

If $x \equiv 2(\bmod 9)$, then $x=18 a+2, a$ a nonnegative integer. Since $x \leq 1000, a \leq 55$. Thus there are $55+1=56$ numbers here. (Note that $a=0$ is a valid case.)

If $x \equiv 4(\bmod 9)$, then $x=36 a+4$. The possible values for a here are $\{0,1, \ldots, 27\}$, giving 28 numbers.

If $x \equiv 5(\bmod 9)$, then $x=45 a+5$, and $a \leq 22$. Thus there are 23 numbers for this case.

If $x \equiv 6(\bmod 9)$, then $x=18 a+6$, and like in the case where $x \equiv 2$ $(\bmod 9)$, there are 56 possible numbers.

If $x \equiv 7(\bmod 9)$, then $x=63 a+7$. The largest value of a such that $x \leq 1000$ is $a=15$, so there are 16 numbers for this case.

Finally, if $x \equiv 8(\bmod 9)$, then $x=72 a+8$, and there are 14 possible numbers for x.

In total, the cardinality of \mathcal{A} is $112+111+111+56+28+23+56+$ $16+14=527$.

TF5 Problem The two front tires of a new four-wheeled car will wear out after 38400 km , whereas the two rear tires will wear out after 51600 km . Also, suppose that five identical tires, including one spare tire, come with the car. If you can easily change the tires whenever you want, what is the maximum distance that can be driven?
Answer 55040 km
Solution If we assume that tires wear out at a constant rate, then the total wear (i.e., if the wear on a tire is 1 then the tire is unusable) on
the four tires for every kilometer is $\frac{2}{38400}+\frac{2}{51600}=\frac{1}{11008}$. Thus the maximum number of kilometers obviously happens if the wear is spread evenly among the five tires. Thus the total distance that can be traveled is $5 \times 11008=55040 \mathrm{~km}$.

TF6 Problem Three circles with equal radii $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are on a plane such that each of the three circles passes through the other two circles' centers. A smaller circle Γ_{4} is internally tangent to all three circles, and the three circles are all internally tangent to a larger circle Γ_{5}. If the product of the lengths of the radii of the five circles is equal to 162 , find the radius of Γ_{1}.

Answer 3

Solution

Let O_{n} be the center of circle Γ_{n}. (In this case $O_{3}=O_{4}$.) We assign $O_{2}(0,0), O_{3}(r, 0)$, such that r is the radius of Γ_{1}. Then, since
$O_{1} O_{2} O_{3}$ is equilateral, $O_{1}\left(\frac{r}{2}, \frac{\sqrt{3}}{2} r\right)$. Since O_{4} lies on the altitudes of $\triangle O_{1} O_{2} O_{3}$, it is the orthocenter and thus the centroid, as the triangle is equilateral. Then $O_{4}\left(\frac{r}{2}, \frac{\sqrt{3}}{6} r\right)$.
Note that A, O_{1}, O_{4} and B are collinear and the line that contains them is perpendicular to the segment $O_{2} O_{3}$. Since $A O_{1}$ is a radius, then A is r units above O_{1}, i.e., $A\left(\frac{r}{2}, \frac{\sqrt{3}+2}{2} r\right)$; similarly $B O_{1}$ is a radius thus $B\left(\frac{r}{2}, \frac{\sqrt{3}-2}{2} r\right)$. A radius of Γ_{4} is $O_{4} B$, which has length $\frac{\sqrt{3}}{6} r-\frac{\sqrt{3}-2}{2} r=\frac{3-\sqrt{3}}{3} r$. On the other hand, a radius of Γ_{5} is $O_{4} A$, which has length $\frac{\sqrt{3}+2}{2} r-\frac{\sqrt{3}}{6} r=\frac{3+\sqrt{3}}{3} r$.
Therefore the product of the lengths of the radii is $r^{3} \cdot \frac{3-\sqrt{3}}{3} r$. $\frac{3+\sqrt{3}}{3} r=162$, or $\frac{2}{3} r^{5}=162$. Solving for r, we have $r=3$.

TF7 Problem The volume of a right circular cylinder is $6 \sqrt{3} \mathrm{~cm}^{3}$. What is its minimum possible total surface area?
Answer $18 \sqrt[3]{\pi} \mathrm{cm}^{2}$
Solution Let r and h be the radius and the height of the cylinder, respectively. Also let TSA be the total surface area, and V the vol-
ume. Then from AM-GM, TSA $=2 \pi r^{2}+2 \pi r h \geq 3 \sqrt[3]{2 \pi r^{2}(\pi r h)^{2}}=$ $3 \sqrt[3]{2 \pi\left(\pi r^{2} h\right)^{2}}=3 \sqrt[3]{2 \pi V^{2}}=18 \sqrt[3]{\pi} \mathrm{cm}^{2}$.

TF8 Problem Find $\cot \left(\cot ^{-1} 2+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7\right)$. Answer $\frac{11}{23}$
Solution Note that $\operatorname{Arg}(2+\mathfrak{i})=\cot ^{-1} 2, \operatorname{Arg}(3+\mathfrak{i})=\cot ^{-1} 3, \operatorname{Arg}(5+$ $\mathfrak{i})=\cot ^{-1} 5$, and $\operatorname{Arg}(7+\mathfrak{i})=\cot ^{-1} 7$. Then, by de Moivre's formula, we have

$$
\begin{aligned}
& \cot ^{-1} 2+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7 \\
& =\operatorname{Arg}(2+\mathfrak{i})+\operatorname{Arg}(3+\mathfrak{i})+\operatorname{Arg}(5+\mathfrak{i})+\operatorname{Arg}(7+\mathfrak{i}) \\
& =\operatorname{Arg}((2+\mathfrak{i})(3+\mathfrak{i})(5+\mathfrak{i})(7+\mathfrak{i})) \\
& =\operatorname{Arg}(110+230 \mathfrak{i})=\tan ^{-1} \frac{23}{11}=\cot ^{-1} \frac{11}{23}
\end{aligned}
$$

TF9 Problem $\overline{x 34 y 73}$ is divisible by 7. Find the sum of all possible values of $y-x$.

Answer 3
Solution Since $34073 \equiv 4(\bmod 7), 100000 \equiv 5(\bmod 7)$, and $100 \equiv$ $2(\bmod 7)$ then x and y satisfy the equivalence $(5 x+2 y) \equiv 3(\bmod 7)$. But $(5 x+2 y) \equiv(-2 x+2 y) \equiv 10(\bmod 7)$, so $(y-x) \equiv 5(\bmod 7)$.

Therefore either $y-x$ is -2 or 5 . The sum is $5-2=3$.
TF10 Problem The sum of the first ten terms of an arithmetic sequence is 155 and the sum of the first two terms of a geometric sequence is 9. Find all possible ordered pairs of the common difference and the common ratio (d, r) if the common difference is the first term of the geometric sequence and the common ratio is the first term of the arithmetic sequence.
Answer $(3,2)$ and $\left(\frac{2}{3}, \frac{25}{2}\right)$
Solution As from the problem let the common difference, and the first term of the geometric sequence, be d; and let the common ratio, and the first term of the arithmetic sequence, be r. Then we know that $r+(r+d)+(r+2 d)+\cdots+(r+9 d)=10 r+45 d=155$, and $d+d r=9$. Solving for r in the second equation gives $r=\frac{9}{d}-1$ (since $d \neq 0$). Then, $\frac{90}{d}-10+45 d=155$. This simplifies to $90+45 d^{2}=165 d$, or $3 d^{2}-11 d+6=0 \Rightarrow(d-3)(3 d-2)=0$. Therefore $d=3$ or $d=\frac{2}{3}$. If $d=3$ then $r=2$; if $d=\frac{2}{3}$ then $r=\frac{25}{2}$. Thus the ordered pairs are $(3,2)$ and $\left(\frac{2}{3}, \frac{25}{2}\right)$.

TF11 Problem Suppose you have a circular pizza divided into six equal
slices, and you have to choose one flavor for each slice. If there are three flavors to choose from, and adjacent slices have to have different flavors, how many ways are there to flavor the pizza?

Answer 14

Solution Three cases have to be considered: one where there are three slices of one flavor and three of another; one where there are two slices for each of the three flavors; and another where there is one slice of the first flavor, two of the second, and three of the third. One cannot have 4 or more slices for one flavor as it will require some adjacent slices to have the same flavor.

Case 1. Three slices for each of two flavors. If the flavors are A and B then one can only have $A B A B A B$ as the order of the flavors. Note that $A B A B A B=B A B A B A$ since this is just rotation by one slice. Therefore there are $\binom{3}{2}=3$ ways in this case.

Case 2. Two slices for each of three flavors. The only possible permutations are $A C B C A B, A B C B A C, A B C A B C, A C B A B C$, and $A C B A C B$. All other permutations are rotations of any of the above. Thus there are five ways here.

Case 3. One slice for the first flavor, two for the second, three for the
third. If we first denote the flavor with three slices as A, the one with two as B, and the last one C our only permutation is $A B A B A C$. Now there are three choices for A, two for B and one for C. Thus we have 6 ways.

Therefore we have a total of $3+5+6=14$ ways.
TF12 Problem In a diving competition, 5 judges score each dive on a scale from 1 to 10 . The point value of the dive is obtained by dropping the highest and lowest scores and multiplying the sum of the remaining scores by the degree of difficulty. If a dive with a degree of difficulty of 3.2 received scores of $7.5,8.0,9.0,6.0$ and 8.5 , what was the point value of the dive?

Answer 76.8

Solution The sum of the scores excluding the highest and lowest scores is 24 . Multiplying by 3.2 we get 76.8.

TF13 Problem For what real values of k will the function $f(x)=(k-2) x+$ $3 k-4, x \in \mathbb{R}$ be even, and for what values of k will the function be odd?
Answer Even: $k=2$; Odd: $k=\frac{4}{3}$
Solution An even function f satisfies $f(-x)=f(x)$. Therefore we
have $-(k-2) x+3 k-4=(k-2) x+3 k-4$ for all real x, thus $k-2=0$. Thus $k=2$ will make the function even.

An odd function, meanwhile, satisfies $f(-x)=-f(x)$. Therefore we have $-(k-2) x+3 k-4=-((k-2) x+3 k-4)$ for all real x, which implies $3 k-4=0$. Thus $k=\frac{4}{3}$ will make the function odd.

TF14 Problem Lewis has five cards. Each card has one black and one white face. He shuffles the five cards and puts them in a row. If Lewis can flip consecutive cards with the same face to the other face, what is the expected value of the minimum number of flips needed to make all the cards black face up?
Answer $\frac{3}{2}$
Solution We work by cases. For brevity a "white card" means a card whose white face is face up.

Case 1 . There are exactly 0 white cards. The probability of this happening is $\frac{1}{32}$ and 0 flips are needed.

Case 2 . There is exactly 1 white card. The probability of this happening is $\frac{5}{32}$ and 1 flip is needed.

Case 3. There are exactly 2 white cards. The probability of the two
cards being adjacent is $\frac{4}{32}$ and 1 flip is needed. The probability that the two are not adjacent is $\frac{6}{32}$ and 2 flips are needed.

Case 4. There are exactly 3 white cards. The probability that the three cards are adjacent is $\frac{3}{32}$ and 1 flip is needed. The probability that exactly two of the three cards are adjacent is $\frac{6}{32}$ and 2 flips are needed. The probability that none are adjacent is $\frac{1}{32}$ and 3 flips are needed.

Case 5 . There are exactly 4 white cards. The probability that the four cards are adjacent is $\frac{2}{32}$ and 1 flip is needed. The probability that exactly three of the four are adjacent is $\frac{3}{32}$ and 2 flips are needed.

Case 6 . There are exactly 5 white cards. The probability that this happens is $\frac{1}{32}$ and 1 flip is needed.
Therefore, the expected value is $\frac{1}{32} \cdot 0+\frac{5}{32} \cdot 1+\frac{4}{32} \cdot 1+\frac{6}{32} \cdot 2+\frac{3}{32}$. $1+\frac{6}{32} \cdot 2+\frac{1}{32} \cdot 3=\frac{2}{32} \cdot 1+\frac{3}{32} \cdot 2+\frac{1}{32} \cdot 1=\frac{48}{32}=\frac{3}{2}$.
TF15 Problem In the cryptarithm $\overline{A P A T}+\overline{A P A T}=\overline{W A L O}$, each letter consistently represents one digit from 0 to 9 . Two letters cannot represent the same digit, and a number cannot start with the digit zero.

What is the sum of all possible values of the 4-digit number $\overline{W A L O}$? The letter O does not necessarily represent the digit zero.
Answer 40226
Solution First, A can only be 1, 2, 3 or 4 . Also, either W is one more than L or one less. In fact, A cannot be 1 or 3 because there are no integer solutions for $2 P=1,2 P=11,2 P=3$ or $2 P=13$.

Case 1. $A=2$. First consider the case where $W=4$ and $L=5$: $\overline{2 P 2 T}+\overline{2 P 2 T}=\overline{425 O}$. Here, $P=1$ as there is no carry-over to the thousands place. On the other hand, there is a carry-over to the tens place; thus $T \geq 5$. T cannot be 5 as it has already been used. If $T=6$, then $O=2$; but $A=2$. If $T=7, O=4$; if $T=8, O=6$; and if $T=9$, $O=8$. These are the three solutions.

If $W=5$ and $L=4$, then $P=6$ and $T \leq 4$ since there is a carry-over
to the thousands place and none to the tens place. If $T=0, O=0$, contradicting the fact that all letters must represent different digits. If $T=1, O=2$; but $A=2$. Similarly $T \neq 2$. If $T=3, O=6$, but $P=6$. $T \neq 4$ since $L=4$. Therefore there are no solutions for this case.

$$
\begin{aligned}
& 262 \text { 2621 } 262 \text { \& } \\
& \frac{+262}{524} \frac{+2621}{524 \text { \& }} \frac{+262 \text { Z }}{524} \\
& 2623262 \text { * } \\
& +2623+262 * \\
& \begin{array}{lllllll}
5 & 2 & 4 & 5 & 2 & 4
\end{array}
\end{aligned}
$$

Case 2. $A=4$. First consider the case where $W=8$ and $L=9$. Then $2 P=4$ or $P=2$. Since there is a carry-over to the tens digit, $T \geq 5$. If $T=6, O=2$ but already $P=3$. If $T=7, O=4$ but $L=4 . T \neq 8$ as $W=8$ and $T \neq 9$ as $L=9$. Thus, T can only be 5 , and $O=0$.

$$
\begin{array}{r}
4245 \\
+4245 \\
\hline 8490
\end{array} \begin{array}{r}
4246 \\
+4246
\end{array}+\begin{array}{r}
4247 \\
+4247 \\
849
\end{array}
$$

$$
\begin{array}{r}
424 \not 又 \\
+424 \not 又 \\
\hline 8496
\end{array} \begin{array}{r}
424 \\
+424 \not 又 \\
849 \not 又
\end{array}
$$

If $W=9$ and $L=8$ ，then $P=7$ ．Now $T \leq 4$ as there is no carry－over to the tens digit．If $T=0, O=0$ which cannot be；if $T=2, O=4$ but already $A=4$ ．Similarly $T \neq 4$ ．If $T=1, O=2$ ；if $T=3 ; O=6$ ．These are the two solutions．

$$
\begin{aligned}
& \begin{array}{lllllllllll}
4 & 7 & 4
\end{array} \\
& +474+4741+4742 \\
& 948 \% 94829484 \\
& \begin{array}{llllllll}
4 & 7 & 4 & 3 & & 4 & 7
\end{array} \\
& \begin{array}{r}
4743 \\
+9486
\end{array} \frac{+474}{948 \not 8}
\end{aligned}
$$

Our solutions are $4254,4256,4258,8490,9482,9486$ ．Their sum is 40226.

Individual Semifinals

Easy Round

IS-E1 Problem Bulbasaur, Charmander, and Squirtle have some berries to eat. All three are in a generous mood, so Bulbasaur gives Charmander as many berries as Charmander has and Squirtle as many Squirtle has. Then, Charmander does the same, giving Bulbasaur and Squirtle as many berries as they each have. Finally, Squirtle gives Bulbasaur and Charmander as many berries as each have. If after this each has 16 berries, how many berries did Bulbasaur have at first?

Answer 26

Solution We work backwards. Before Squirtle shared its berries we know that Bulbasaur and Charmander each have $\frac{16}{2}=8$ berries. Since there is a total of 48 berries, Squirtle has $48-8-8=32$ berries. Before Charmander shared, Bulbasaur has $\frac{8}{2}=4$ berries and Squirtle, $\frac{32}{2}=16$ berries, leaving Charmander with $48-4-16=28$ berries. Thus, at the beginning of the game, before Bulbasaur shared, Charmander has $\frac{28}{2}=14$ berries and Squirtle, $\frac{16}{2}=8$ berries. Thus, Bulbasaur has $48-14-8=26$ berries.

IS-E2 Problem Find the last digit of $7^{11}+8^{10}-9^{12}$.

Answer 4

Solution Note that $7^{11}<9^{11}$ and $8^{10}<9^{11}$. Thus $7^{11}+8^{10}<9^{11}+9^{11}<$ 9^{12}, and the given expression is negative. From modulo arithmetic it is known that the last digit of 7^{11} is 3 , the last digit of 8^{10} is 4 , and the last digit of 9^{12} is 1 . Therefore the last digit of $7^{11}+8^{10}-9^{12}$ is not $3+4-1=6$, but $10-6=4$.

IS-E3 Problem A convex polyhedron consists solely of hexagonal and quadrilateral faces. If for all vertices three faces meet at a vertex, how many quadrilateral faces are there?

Answer 6

Solution Let there be m hexagonal faces and n quadrilateral faces. We have $m+n$ faces, $\frac{6 m+4 n}{3}$ vertices, and $\frac{6 m+4 n}{2}$ edges, since two adjacent faces of convex polyhedra always meet at an edge. By Euler's polyhedron formula we have $\frac{6 m+4 n}{3}+(m+n)=\frac{6 m+4 n}{2}+$ 2. Simplifying the equation, the m 's cancel out, and $n=6$.

IS-E4 Problem At how many points do the graphs of $y=2 \log x$ and $y=\log (2 x)$ intersect in the $x y$-plane?

Answer 1

Solution $2 \log x=\log (2 x)$ implies that $x^{2}=2 x$, since $2 \log x=$ $\log x^{2}$. This gives us $x=0$ or $x=2$. If $x=0$, there is no value for y as $\log 0$ is undefined; if $x=2, y=2 \log 2$. Therefore there is only one intersection.

IS-E5 Problem How many permutations of five distinct letters are there if one letter has to be in front of another?

Answer 60

Solution Without the restriction, there are 5! = 120 permutations. Now there is a bijection between permutations where one letter, say A, is always in front of another, say B, and permutations where B is ahead of A. Thus exactly half of the permutations satisfy the given condition, or $\frac{120}{2}=60$ permutations.

Average Round

IS-A1 Problem At most how many circles of radius 1 cm can fit inside a square with side 20 cm such that the circles do not overlap?

Answer 105

Solution The circle have to be packed such that adjacent circles' centers form equilateral triangles. Refer to the following figure.

Since the diameter of each circle is 2 cm , then ten of them can fit exactly on the bottom row. Thus the second bottom row will have one less (9 circles). The rows will alternate having 10 and 9 circles. Now we have to find how many rows there will be.

If there are n rows, then the height will be $2+(n-1) \sqrt{3}$. Now $2+(n-1) \sqrt{3} \leq 20$, or $n \leq 6 \sqrt{3}+1$. But $100<108<121 \Rightarrow 10<$ $6 \sqrt{3}<11 \Rightarrow 11<6 \sqrt{3}+1<12$. Therefore there are $\lfloor 6 \sqrt{3}+1\rfloor=11$ rows. There are six rows with ten circles and five rows with nine circles, thus we can fit at most $60+45=105$ circles.
IS-A2 Problem Evaluate the series $\sum_{k=0}^{2016} k \mathfrak{i}^{k}$, where $\mathfrak{i}=\sqrt{-1}$.
Answer 1008-1008i
Solution The sum is equal to $\sum_{k=1}^{2016} k i^{k}$. We consider the sum $\sum_{k=4 n+1}^{4 n+4} k i^{k}$, where n is a nonnegative integer. This sum is $(4 n+4)-(4 n+2)+$
$((4 n+1)-(4 n+3)) \mathfrak{i}=2-2 \mathfrak{i}$. This happens 504 times, thus the answer is $1008-1008$ i.

IS-A3 Problem An unfair coin is tossed n times, for some positive integer n. If the variance of the distribution of the number of heads is $\sqrt{99}$, find the minimum possible value for n.

Answer 40

Solution The variance of the binomial distribution $\operatorname{Bi}(n, p)$ is $n p(1-$ $p)=\sqrt{99}$, where p is the probability of heads. By AM-GM, $p(1-$ $p)<\frac{1}{4}$ (as $p \neq 1-p$), so $\sqrt{99}<\frac{n}{4}$, or $n>4 \sqrt{99}=\sqrt{1584}$. Since $39=\sqrt{1521}<\sqrt{1584}<\sqrt{1600}=40$, the minimum possible value of n is 40 .

IS-A4 Problem A turtle born on January 1 in the first half of the nineteenth century was x years old in the year x^{2}. How old is it now, in years?

Answer 210 years old
Solution We see that $42=\sqrt{1764}<\sqrt{1800}<\sqrt{1849}=43<$ $\sqrt{1850}$. Thus $x=43$, and the turtle was born in $43^{2}-43=1806$. It is now 210 years old.

IS-A5 Problem Find the sum of all values of x that satisfy the equation $2\lfloor x\rfloor=x+2\{x\}$, where $\lfloor x\rfloor$ is defined as the least integer greater
than or equal to x, and $\{x\}=x-\lfloor x\rfloor$.
Answer 4
Solution Substituting $x=\lfloor x\rfloor+\{x\}$ into the original equation gives us $2\lfloor x\rfloor=\lfloor x\rfloor+3\{x\}$, or $\lfloor x\rfloor=3\{x\}$. Since $0 \leq\{x\}<1,0 \leq\lfloor x\rfloor<3$. Thus $\lfloor x\rfloor$ can only be 0,1 , or 2 .
If $\lfloor x\rfloor=0$, then $\{x\}=0$, and $x=0$; if $\lfloor x\rfloor=1$, then $\{x\}=\frac{1}{3}$ and $x=\frac{4}{3}$; if $\lfloor x\rfloor=2$, then $\{x\}=\frac{2}{3}$ and $x=\frac{8}{3}$. The sum of all possible values, then, is 4.

Difficult Round

IS-D1 Problem A polynomial f with positive integer coefficients satisfies $f(12)=311 \times 113$. If the sum of its coefficients is 31 , find all possible values of $f(10)$.

Answer 57034

Solution Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Then $f(12)=$ $a_{n} 12^{n}+a_{n-1} 12^{n-1}+\cdots+a_{1} \cdot 12+a_{0}$. A possible set of values for the coefficients are the consecutive digits of the base-12 representation of $311 \times 113=35143_{10}=18407_{12}$. Note that the sum of the digits here is 20 , and that $20+12-1=31$.

Currently our function is $f(x)=x^{4}+8 x^{3}+4 x^{2}+0 x+7$, and to make the sum of the coefficients 31,1 has to be decreased from a coefficient and 12 added to the coefficient of the lower power of x. We can't remove 1 from 0 , as all coefficients are positive (having a coefficient as zero just means the term won't exist, and so does not violate the conditions). Thus the possible functions are $f_{1}(x)=x^{4}+$ $8 x^{3}+3 x^{2}+12 x+7, f_{2}(x)=x^{4}+7 x^{3}+16 x^{2}+7, f_{3}(x)=20 x^{3}+4 x^{2}+7$. Then $f_{1}(10)+f_{2}(10)+f_{3}(10)=18427+18607+20407=57034$.
 nents of 2 are from the successive terms of the sequence $1,1,1,3,5,9, \ldots$, where the first three terms are 1 and succeeding terms are generated by getting the sum of the last three terms.
Answer $\sqrt[7]{16}$
Solution Denote by a the given expression. Then

$$
a=2^{\frac{1}{3}} 2^{\frac{1}{9}} 2^{\frac{1}{27}} 2^{\frac{3}{81}} 2^{\frac{5}{243}} 2^{\frac{9}{729}} \cdots=2^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{3}{81}+\frac{5}{243}+\frac{9}{729}+\cdots .} .
$$

Let the exponent of a be x. Then

$$
\begin{gather*}
x=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{3}{81}+\frac{5}{243}+\frac{9}{729}+\cdots \tag{1}\\
3 x=1+\frac{1}{3}+\frac{1}{9}+\frac{3}{27}+\frac{5}{81}+\frac{9}{243}+\cdots \tag{2}\\
9 x=3+1+\frac{1}{3}+\frac{3}{9}+\frac{5}{27}+\frac{9}{81}+\cdots \tag{3}\\
27 x=9+3+1+\frac{3}{3}+\frac{5}{9}+\frac{9}{27}+\cdots \tag{4}
\end{gather*}
$$

(4) - (3)-(2)-(1) gives us $(27-9-3-1) x=8$ or $x=\frac{8}{14}=\frac{4}{7}$. Therefore $a=2^{\frac{4}{7}}=\sqrt[7]{2^{4}}=\sqrt[7]{16}$.

IS-D3 Problem How many 2016-digit positive integers that only have digits $1,2,3$, and 4 are there such that the number has an even number of 2's?

Answer $2^{4031}+2^{2015}$
Solution Let a_{n} be the number of n-digit integers that satisfy the above condition. Also, let b_{n} be the number of n-digit integers with only $1,2,3$, and 4 but with an odd number of 2's. Then $a_{n}=$ $3 a_{n-1}+b_{n-1}$, because a_{n} consists of all numbers with either (a) 1 , 3 , or 4 as the first digit and with an even number of 2's among the succeeding $(n-1)$ digits, or (b) 2 as the first digit and with an odd number of 2's among the succeeding $(n-1)$ digits. Similarly
$b_{n}=3 b_{n-1}+a_{n-1}$. Also, the initial values are $a_{1}=3, b_{1}=1$.
Adding the two equations together gives us $a_{n}+b_{n}=4\left(a_{n-1}+b_{n-1}\right)$, $a_{1}+b_{1}=4$. Therefore, $a_{n}+b_{n}=4^{n}$.

Similarly, subtracting one from the other results in $a_{n}-b_{n}=2\left(a_{n-1}-\right.$ $b_{n-1}, a_{1}-b_{1}=2$. Therefore, $a_{n}-b_{n}=2^{n}$. This means that $a_{n}=$ $\frac{4^{n}+2^{n}}{2}$ and $b_{n}=\frac{4^{n}-2^{n}}{2}$.
The question is asking for a_{2016}, which is $\frac{4^{2016}+2^{2016}}{2}=2^{4031}+2^{2015}$.
IS-D4 Problem For each of the about 7 billion people in the world, compute the product of the number of fingers in his/her right hand, left hand, right foot and left foot. Suppose the about 7 billion products are also multiplied together. Give a reasonable estimate, within 5% of the exact answer, of this value. You may leave your answer in exponential form.

Answer 0

Solution An amputee will have zero as the product, and thus the product of all the numbers is zero. Only zero is accepted since $0 \pm 5 \%=0$.

IS-D5 Problem The angle of elevation of a building is observed from a
point on the horizontal plane on which it stands. At a point x feet nearer the angle of elevation is the complement of the original angle observed. At another point y feet nearer (from the second point) the angle of elevation is now double the first. Express the height of the building in terms of x and y.
Answer $\sqrt{(x+y)^{2}-\left(\frac{x}{2}\right)^{2}}$
Solution Let the original angle of elevation observed have measure A, the height of the building be h, and the distance between the building and the third point be z. Then from the given $\tan A=$ $\frac{h}{x+y+z}=\frac{y+z}{h}$, and $\tan 2 A=\frac{h}{z}$. Now from the double-angle formula $\frac{h}{z}=\frac{2\left(\frac{y+z}{h}\right)}{1-\left(\frac{y+z}{h}\right)^{2}}=\frac{2(y+z) h}{h^{2}(y+z)^{2}}$, or $2 z(y+z)=h^{2}-(y+$ $z)^{2} \Rightarrow h^{2}=(y+z)(y+3 z)$.
But $\frac{h}{x+y+z}=\frac{y+z}{h} \Rightarrow h^{2}=(y+z)(x+y+z)$. Equating the two implies $x+y+z=y+3 z$ as $y+z \neq 0$. Therefore, $z=\frac{x}{2}$. Now $h^{2}=(y+z)(x+y+z)=y^{2}+2 x y+\frac{3}{4} x^{2}=(x+y)^{2}-\left(\frac{x}{2}\right)^{2}$, or $h=\sqrt{(x+y)^{2}-\left(\frac{x}{2}\right)^{2}}$.

Individual Finals

E Problem What is the value of $\varphi^{12}+\varphi^{8}+\varphi^{5}+160 \varphi$, where $\varphi=\frac{-1+\sqrt{5}}{2}$.

Answer 99

Solution Note that $\varphi^{2}+\varphi-1=0$.
First, we show by induction that for all positive integers n,

$$
\varphi^{n}=(-1)^{n+1} F_{n} \varphi+(-1)^{n} F_{n-1},
$$

where $F_{0}=0, F_{1}=1, F_{i}=F_{i-1}+F_{i-2}$ for integers $i \geq 2$ are the Fibonacci numbers.

Now for $n=1$, LHS $=(-1)^{2} F_{1} \varphi+(-1)^{1} F_{0}=\varphi+0=\varphi=$ RHS.
Assume that the statement is true for $n=k$. Then $\varphi^{k}=(-1)^{k+1} F_{k} \varphi+$ $(-1)^{k} F_{k-1}$. Now for $n=k+1$:

$$
\begin{aligned}
\varphi^{k+1} & =\varphi^{k} \varphi=\left((-1)^{k+1} F_{k} \varphi+(-1)^{k} F_{k-1}\right) \varphi \\
& =(-1)^{k+1} F_{k} \varphi^{2}+(-1)^{k} F_{k-1} \varphi \\
& =(-1)^{k+1} F_{k}(-\varphi+1)+(-1)^{k} F_{k-1} \varphi \\
& =(-1)^{k} \varphi\left(F_{k}+F_{k-1}\right)+(-1)^{k+1} F_{k} \\
& =(-1)^{k} \varphi F_{k+1}+(-1)^{k+1} F_{k} \\
& =(-1)^{k+2} \varphi F_{k+1}+(-1)^{k+1} F_{k}
\end{aligned}
$$

Thus the statement is true for $n=k+1$, and by induction true for all positive integers n. This means that

$$
\begin{aligned}
\varphi^{12} & =(-1)^{13} F_{12} \varphi+(-1)^{12} F_{11}=-144 \varphi+89 \\
\varphi^{8} & =(-1)^{9} F_{8} \varphi+(-1)^{8} F_{7}=-21 \varphi+13 \\
\varphi^{5} & =(-1)^{6} F_{5} \varphi+(-1)^{5} F_{4}=5 \varphi-3
\end{aligned}
$$

Adding these three equations gives us $\varphi^{12}+\varphi^{8}+\varphi^{5}=-160 \varphi+99$, or $\varphi^{12}+\varphi^{8}+\varphi^{5}+160 \varphi=99$.

A Problem In a class election for class head, 44 students write their choice on a slip of paper. Now the teacher counts the votes in a uniformly random order. If Student A gets 26 votes and Student B gets 18 votes, what is the probability that Student A never trailed during the counting process?

Answer $\frac{1}{3}$

Solution We define a list like $A B A A B A B \ldots$, which tells us who was selected for the i th slip. Now, since the votes for A and votes for B can be rearranged we have $\binom{44}{18}$ lists with 26 A's and 18 B's.

We call a list with 26 A's and 18 's good if it satisfies the given condition and bad otherwise. A list is bad when there exists a k such that A has
k votes and B has $k+1$ votes. The smallest k is the first time A trails. For every bad list, after the first instance A trails, we swap all remaining votes of A to B and vice versa. Therefore after this point A gets $17-k$ votes and B gets $26-k$ votes, giving us A with $k+17-k=17$ votes and B with $k+1+26-k=27$ votes.

After the manipulation, B will always win. Therefore any list with 17 A's and $27 B$'s can be reverted to a bad list by selecting the first time B has more votes than A (which is guaranteed) then swapping A 's votes with B 's votes afterwards. Thus there exists a bijection between bad lists and lists with $17 A$'s and $27 B$'s, and there are $\binom{44}{17}$ bad lists.

Thus, the probability is

$$
\left(1-\frac{\# \text { of bad lists }}{\# \text { of lists }}\right)=1-\frac{\binom{44}{17}}{\binom{44}{18}}=1-\frac{44!26!18!}{27!17!44!}=1-\frac{2}{3}=\frac{1}{3} .
$$

D Problem Find all nonnegative integers $N \leq 2064$ such that $\frac{k=1}{N!}$ is a perfect square.

Solution First we show that 1032 is a solution.

$$
\begin{aligned}
\prod_{k=1}^{2064} k! & =\prod_{k=1}^{1032}(2 k)!(2 k-1)! \\
& =\prod_{k=1}^{1032}(2 k)((2 k-1)!)^{2} \\
& =\left(\prod_{k=1}^{1032}((2 k-1)!)^{2}\right)\left(2^{1032} \prod_{k=1}^{1032} k\right) \\
& =\left(2^{516} \prod_{k=1}^{1032}(2 k-1)!\right)^{2}(1032!)
\end{aligned}
$$

Therefore $N=1032$ is a possible solution. Now assume for the sake of contradiction that there exists another nonnegative integer M that satisfies this condition. Then it follows that either $\frac{M!}{1032!}($ if $M>1032)$
or $\frac{1032!}{M!}$ (if $M<1032$) is a perfect square, since both $\frac{\prod_{k=1}^{2064} k!}{1032!}$ and $\frac{\prod_{k=1}^{2064} k!}{M!} k$ are perfect squares.
Note that if $M>1032$, then $\frac{M!}{1032!}$ will always contain only one copy of 1033 , since 1033 is prime. Thus $\frac{M!}{1032!}$ will never be a perfect square.
Similarly, if $M<1032$, then $\frac{1032!}{M!}$ will always contain only one copy of 1031, since 1031 is prime. Thus $\frac{1032!}{M!}$ will never be a perfect square.

Therefore only $N=1032$ satisfies the given condition.

