Binary operations

CJ Quines June 19, 2025

Warmup (fake)

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Suppose there exists $\ell, r \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $f(\ell, x) = f(x, r) = x$. Prove that $\ell = r$.
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Suppose that for all $x, y \in \mathbb{R}$ there exists a unique $z \in \mathbb{R}$ such that f(x, z) = y. Prove there exists $g: \mathbb{R}^2 \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$f(x, g(x, y)) = g(x, f(x, y)) = y$$

3. Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ be functions. Suppose there exists $i, j \in \mathbb{R}$ such that

$$\begin{split} f(i,x) &= f(x,i) = g(j,x) = g(x,j) = x, \\ f(g(x,y),g(z,w)) &= g(f(x,z),f(y,w)), \end{split}$$

for all $x, y, z, w \in \mathbb{R}$. Prove that f and g are the same function.

Words

As the title suggests, these warmups are about binary operations.¹ Here's a bunch of words about binary operations; italic ones are rare enough that I'd define them when I talk or do writeups.

- For a binary operation \star over S, if for all $x, y, z \in S$:
 - $-\ell$ is its **left identity** if $\ell \star x = x$.
 - It's unital if it has a left and right identity.
 - It's commutative if $x \star y = y \star x$.
 - It's associative if $(x \star y) \star z = x \star (y \star z)$.
 - It's left cancellative if $x \star y = x \star z$ implies y = z.
 - It has *left quotients* if there exists a unique d such that $x \star d = y$.
 - It **left distributes** over \circ if $x \star (y \circ z) = (x \star y) \circ (x \star z)$.
 - It's *idempotent* if $x \star x = x$.
- We also have words for a set with a binary operation satisfying certain properties:
 - A magma is a set with a binary operation.²
 - A *semigroup* is an associative magma.
 - A monoid is a unital semigroup.
 - A group is a monoid with (left and right) quotients.

This is in addition to phrases like "unital magma" or "commutative monoid" which hopefully have obvious definitions, and words that I'll define as-needed which appear much less often.

¹I had to start with FEs to make it look like an olympiad handout.

²Old texts will call this a *groupoid*. These days that means something different.

Notes

- When we don't say what a variable x ranges over, we assume it's "for all $x \in S$ ", for a set S which should be clear from context.
- Note that "closure" $(x \star y \in S)$ is part of the definition of \star being a binary operation (that is, a function $\star: S \times S \to S$).
- Sometimes we omit the operation when we only have one binary operation. For example, we can write $(a \star b) \star (c \star (d \star e))$ as (ab)(c(de)). Parentheses are needed when it's not associative.
- I only chose problems that (I think) could appear in an olympiad. Each one has a solution that's self-contained, and mostly involves substituting variables and rewriting equations, rather than using theory.³

Warmup (real)

- 1. Prove that if a binary operation has a left identity ℓ and a right identity r, then $\ell = r$.
- 2. Suppose that \star is a binary operation with left quotients. Prove there exists a binary operation \ such that $x \star (x \setminus y) = x \setminus (x \star y) = y$.
- 3. (Eckmann-Hilton argument \mathbf{Z}) A magma has two unital operations \star and \circ , which satisfy $(x \star y) \circ (z \star w) = (x \circ z) \star (y \circ w)$. Prove that $\star = \circ$.

Quotients

Recall that \star has **left quotients** if, for all $x, y \in S$, there's a unique $d \in S$ such that $x \star d = y$.

- 1. Recall that \star is left cancellative if $x \star y = x \star z$ implies y = z. Find a "good" example of a left cancellative operation without a left quotient.
- 2. Which of these operations have left quotients? (a) Multiplication on \mathbb{Q} . (b) Subtraction on \mathbb{Z} . (c) Over \mathbb{Z} , the operation $a \star b = \lfloor \frac{a}{b} \rfloor$. (d) Over \mathbb{R}^2 , reflecting a point over another point.
- 3. By warmup item 2, if \star has left quotients, there's some \setminus such that $x \star (x \setminus y) = x \setminus (x \star y) = y$. We call \setminus itself the left quotient of \star ; you can read it as "under".

Prove that these definitions are equivalent. In other words, if two binary operations \star and \setminus satisfy $x \star (x \setminus y) = x \setminus (x \star y) = y$, then there's a unique d such that $x \star d = y$.

- 4. Thus, left quotients are a way to define right inverses for a binary operation, even if it doesn't have a (left and right) identity. Which of the operations from item 2 have identities?
- 5. Given any binary operation \star over S, and some $x \in S$, we define **left multiplication by** x as the function $L_x(y) := x \star y$. This is also called *left translation*, and sometimes written $x \star -$. Prove that if \star has left quotients, then L_x is injective and surjective, and thus, a bijection.
- 6. There's another way to prove L_x is a bijection: by finding an inverse function. Prove there exists a function L_x^{-1} such that $L_x L_x^{-1}$ and $L_x^{-1} L_x$ are both the identity.

³If I had to pin down the field of study here, I'd say it's universal algebra. 🗹 It's not quite abstract algebra. These days that refers to studying groups, rings, or fields, but we're looking at weaker structures.

Quasigroups

A quasigroup is a magma Q whose operation \star has a left quotient \setminus and a right quotient /:

$$\begin{aligned} x\star(x\setminus y) &= x\setminus(x\star y) = y,\\ (x/y)\star y &= (x\star y)/y = x. \end{aligned}$$

- 1. Prove that $x / (y \setminus x) = (x / y) \setminus x$.
- 2. (\mathbf{C}) A loop is a quasigroup whose operation \star has a left and right identity. Recall that \star is idempotent if $x \star x = x$. Suppose that Q is an idempotent loop. Prove that |Q| = 1.
- 3. Suppose that \star is associative. Prove that if $x \star b = a \star y$, then $x \setminus a = b / y$.
- 4. (\mathcal{C}) Suppose that \star is associative and Q is non-empty. Prove that Q is a group under \star .

Semigroups

Recall that a **semigroup** S is an associative magma.

- 1. (☑) How many different semigroups are there with two elements? (Formally, I have to say *non-isomorphic* semigroups. Informally, *isomorphic* means "same up to relabelling.")
- 2. (\mathbb{Z}) Suppose $0 < |S| < \infty$. Prove there exists some x such that xx = x.
- 3. (\mathbf{C}) Find all pairs $(I, Q) \in \{\text{left}, \text{right}\}^2$ that make this statement true: A semigroup with I identities and Q quotients is a group.
- 4. (\mathbf{C}) Recall that \star is left cancellative if $x \star y = x \star z$ implies y = z. Suppose that S is (left and right) cancellative, and that |S| is finite. Prove that S is a group. What if |S| is infinite?
- 5. (\mathbf{C} , \mathbf{C}) We say y is a **pseudoinverse** of x if xyx = x. We say S is **regular** if all elements have a pseudoinverse. Suppose S is regular.

Prove the following are equivalent: (a) there's a unique x such that xx = x; (b) S is (left and right) cancellative; (c) all elements have a *unique* pseudoinverse; (d) S is a group.

Bands

Recall that \star is idempotent if $x \star x = x$. A **band** is an idempotent semigroup.

- 1. (\checkmark) Suppose xy = y and yx = x. Prove that zxzy = zy and zyzx = zx.
- 2. (\mathbf{C}) A semilattice is a commutative band. Given a semilattice, define a relation \leq by saying $x \leq y$ iff $x = x \star y$. Prove that \leq is a partial order.

That is: show that \leq is reflexive $(x \leq x)$, antisymmetric $(x \leq y \text{ and } y \leq x \text{ imply } x = y)$, and transitive $(x \leq y \text{ and } y \leq z \text{ imply } x \leq z)$. Why does \star need to be commutative?

- 3. (\mathbf{C}) A rectangular band is a semigroup satisfying xyx = x. Prove that xyz = xz. Prove that rectangular bands are bands.
- 4. (\mathbf{Z}) Let S be a semigroup. Prove the following are equivalent: (a) xy = yx implies x = y; (b) S is a rectangular band.

Shelves

A left shelf is a magma whose operation \triangleright left distributes over itself: $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$. (Some texts will use \triangleleft for this, so be careful.)

- 1. (\mathbf{C} 1.6) Prove that a unital left shelf is associative. In other words: if there exists 1 such that $1 \triangleright x = x \triangleright 1 = x$, then \triangleright is associative.
- 2. A rack is a set R with two operations \triangleright and \triangleleft , such that R is a left shelf over \triangleright and a right shelf over \triangleleft satisfying $x \triangleright (y \triangleleft x) = (x \triangleright y) \triangleleft x = y$. Prove that $x \triangleright (y \triangleleft z) = (x \triangleright y) \triangleleft (x \triangleright z)$.
- 3. ($\[equation 2.1.3\]$) We say \star is **medial** if $(x \star y) \star (z \star w) = (x \star z) \star (y \star w)$. Let R be a rack, and suppose \triangleright is medial. Show that $y \triangleright ((z \triangleright w) \triangleleft x) = z \triangleright ((y \triangleright w) \triangleleft x$.
- 4. Recall that \star is idempotent if $x \star x = x$. Let R be a rack, and suppose \triangleright is idempotent. Prove that \triangleleft is idempotent. A **quandle** is an idempotent rack, and they represent the algebraic structure of the Reidemeister moves from knot theory!
- 5. We say \star is **left involutive** if $x \star (x \star y) = y$. Prove that an idempotent, left involutive, left shelf is a quandle. An involutive quandle is sometimes called a **kei**. Point reflection over \mathbb{R}^2 is a kei, where you set $x \triangleright y$ as the reflection of y over x.
- 6. (Laver tables $\ \square$) This is tricky and long, but completely elementary.
 - a) Prove there exists a unique magma S_N over $\{1, 2, ..., N\}$, whose binary operation \triangleright satisfies $x \triangleright 1 = (x + 1) \mod N$ and $x \triangleright (y \triangleright 1) = (x \triangleright y) \triangleright (x \triangleright 1)$.
 - b) Prove that S_N is a left shelf if and only if $x \triangleright N = N$ for all x.
 - c) Suppose S_{2^n} is a left shelf. Let the operations of S_{2^n} and $S_{2^{n+1}}$ be \triangleright and \flat' . Prove that $(x \triangleright' y) \mod 2^n = (x \mod 2^n) \triangleright (y \mod 2^n)$.
 - d) More specifically, prove that

$$x \triangleright' y = \begin{cases} (x \mod 2^n) \triangleright (y \mod 2^n) + 2^n & \text{if } x \in (2^n, 2^{n+1}) \\ (y \mod 2^n) + 2^n & \text{if } x = 2^n \\ (x \mod 2^n) \triangleright (y \mod 2^n) - (2^n \text{ or } 2^{n+1}) & \text{otherwise.} \end{cases}$$

Conclude by induction that S_{2^n} is a left shelf.

Single-law magmas

- 1. (Putnam 2001/A1 \mathbf{Z}) An operation satisfies (xy)x = y. Prove that x(yx) = y. (It's self-dual!)
- 2. (Putnam 1978/A4– \mathbf{Z}) An operation satisfies (wx)(yz) = wz. Prove that (xz)y = xy.
- 3. (\checkmark) An operation satisfies (xy)y = y(yx) = x. Prove that it's commutative.
- 4. ($\mathbf{\mathbb{Z}}$) An operation is **central** if (xy)(yz) = y. Let S be a central magma.
 - a) Define $L_x(y) := xy$ and $R_x(y) := yx$. Prove that $L_x R_y L_x = L_x$ and $R_x L_y R_x = R_x$.
 - b) Suppose |S| is finite. Prove that $|L_x(S)| = |R_y(S)|$. Let this value be n.
 - c) Let $R_x^{-1}(z) := \{y \in S \mid xy = z\}$. Prove that $|R_x^{-1}(z)| = n$. Conclude that $|S| = n^2$.

- 5. (\square) An operation satisfies (ab)(b(ca)) = b. Prove that ((ac)b)(ba) = b. (Another self-dual!)
- 6. (\mathbf{C}) An operation over S satisfies (a(bc))a = bc. Prove that if |S| is finite, then a((bc)a) = bc. Find a counterexample when |S| is infinite.

See also the Equational Theories Project.

Actual olympiad problems

- 1. (Russia 1998/10/6 $\Case 2$) Find all operations \star over \R such that $(x \star y) \star z = x + y + z$.
- 2. (Estonia TST 2011/3 \mathbf{Z}) Is there an associative operation over \mathbb{Z} with xxy = yxx = y?
- 3. (Belarus 2023/11/1 $\Case 2023/11/1$ $\Case 2023/11/11$ $\Case 2023/111/11$ $\Case 2023/111/11$ $\Case 2023/111/11$ $\Case 2023/111/11$ $\Case 2023/111/11$ \Case
- 4. (USA TSTST 2019/1 🗗) Find all operations \star over $\mathbb{R}_{>0}$ such that $x \star (y \star z) = (x \star y) \cdot c$ (where \cdot is multiplication), and if $x \ge 1$, then $x \star x \ge 1$.
- 5. (Utah 2023/6 \mathbf{C}) Find all associative operations \star over \mathbb{Z} such that + left distributes over \star . (This is ridiculously hard.)