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This article discusses crossing numbers, the Euler characteristic of graphs,
Kuratowski’s, Wagner’s and Fáry’s theorems, ultimately leading up to a
discussion of the crossing number inequality.

1 A motivating puzzle

One of the classical mathematical puzzles is the three utility problem, which can be
phrased as follows:

Problem 1 (Three utility problem). Suppose that three houses are on a field, and
each needs to be connected to gas, water and electricity companies. Without using a
third dimension or sending any of the connections through a company or a house, find
a way to make all nine connections without any of the lines crossing each other.
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The reader who has not seen this problem before is advised to try it out. In other
words, the problem asks for a way to draw the diagram above such that no of the lines
cross each other.

The answer to this puzzle is no. As in, there is no way to do this – any drawing of
such a connection will have at least one pair of lines crossing each other. However,
the answer alone is unsatisfying. It does not illuminate as to the reason why such a
drawing is impossible.

The purpose of this article is to delve into the mathematical formulation behind the
three utility problem: by representing the houses and companies as vertices and the
connections as edges, we produce a graph. The article develops the tools to solve the
three utility problem, and problems similar to this.

A note: a primary focus of this article is to illuminate the motivation behind the
proofs presented. The various heuristics used in the proofs is shown, as these appear
regularly in other combinatorial arguments, and more generally in problem solving,
particularly in competitive mathematics.
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2 Crossing numbers

We define a graph as a collection of vertices and edges connecting pairs of these vertices.
For the remainder of this article, we assume the graph is undirected (edges do not have
a particular direction), connected (by following edges, we can get from one vertex to
any other vertex), loop-free (no edge connects a vertex to itself), and multiplicity-free
(no pair of vertices is connected by more than one edge).

The simplest way to represent a graph is a plane drawing. A typical plane drawing
of a graph will indicate vertices using dots, and edges as curves with dots as the
endpoints. Now, there are an infinite number of ways to draw a graph, but in this
article, our interest is drawn to the drawing with the least number of crossings. A
crossing in a drawing occurs when two edges overlap.

We define the crossing number cr(G) of a graph G as the minimum number of
crossings in a planar drawing of G. When we can draw a graph G such that none of
its edges cross, equivalently, when cr(G) = 0, we say that G is planar.

Suppose we have a graph with n vertices and draw an edge between every pair of
distinct vertices. This graph is Kn, the complete graph with n vertices.

Say we have a set of m vertices and a set of n vertices, and draw an edge between
all pairs of two vertices from different sets. This graph is Km,n, the complete bipartite
graph with m vertices in one set and n vertices in the other.

The observant reader will notice that the graph described in the three utility problem
above is, in fact, K3,3, and the problem is asking to show that K3,3 is planar. In fact,
another name for K3,3 is the utility graph. We will get to the proof that K3,3 is not
planar after a few preliminary problems. The first problem we present is a simple one,
which the reader should try:

Problem 2. Show that K4 is planar.

Proof. After a few attempts of drawing K4, we notice that there is a configuration
with no crossings. And behold, here is our proof:

Problem 3. Show that cr(K5) is 1.

Proof. After playing around, we can find a drawing of K5 that has only one crossing:
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This, however, is not a full proof. The diagram only proves that cr(K5) ≤ 1. To
complete our proof, we need to show that cr(K5) ≥ 1 – or in other words, we need to
show that the crossing number of K5 can’t be zero, that it isn’t planar.

Observe that if a drawing of K5 is planar, then we can take away one vertex and all
the edges connected to that vertex to get K4. Since the original graph, K5, is planar,
then the graph formed by removing one vertex, K4, must also be planar. Thus, to
draw a planar graph of K5, we can instead consider a planar drawing of K4.

1 2

3

4

Consider the above planar drawing of K4. The fifth vertex needed to make K5 must
end up in one of the four regions shown above, either one of the three internal regions
1, 2, or 3, or the large external region 4.

In either case, the vertex will be enclosed by a triangular region, formed by three
vertices and three edges. To draw an edge from the fifth vertex to the other vertex, we
have to cross one of the edges of K4 – contradicting the fact that K5 is planar. Thus,
we have shown that K5 is not planar, so cr(K5) ≥ 1. Combined with cr(K5) ≤ 1, we
have cr(K5) = 1.

The crux idea of this proof is to make use of the fact that any part of a planar
graph is still planar. This makes use of the heuristic of decomposing and recombining.
We look at the problem of proving that K5 is non-planar, and we recall our previous
result, that K4 is planar, which turns out to be useful.

These tools – the idea of looking at a part of a graph, and the heuristic of decomposing
and recombining – are in fact sufficient to solve the three utility problem. The reader
is urged to try the problem first, before reading the solution presented below.

Problem 4 (Three utility problem). Show that cr(K3,3) is 1.

Proof. We observe that this problem is similar to the previous problem. This gives
us the inspiration to use a similar approach: first prove the upper bound of cr(K3,3)
through a diagram, then prove the lower bound by using a part of cr(K3,3) which
is planar. After experimentation, we notice that K3,2 is planar, which leads to the
following solution.

The following diagram is K3,3 with only one crossing, which establishes the bound
of cr(K3,3) ≤ 1. The two sets of vertices are colored gray and white.
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In a similar manner to the above proof of cr(K5) = 1, we start with a planar drawing
of K3,2, and add a vertex.

Through similar logic, wherever we place the additional vertex, we need to cross an
edge. Thus the graph of K3,3 is not planar, and so cr(K3,3) ≥ 1. Combined with the
fact that cr(K3,3) ≤ 1, this means that cr(K3,3) = 1.

These two problems illustrate the heuristic of looking at sub-problems: choosing
sub-problems that are easier to solve than our original problem and using the results
to solve the original. Another strategy used is trying specific cases: drawing graphs
similar to the one in the original problem, in order to look for a solution.

One of the questions, perhaps, is why we chose to look at K3,2 rather than any
other graph. Lots of graphs are planar – why this particular graph? Well, K3,2 is a
large part of this problem – it is only one vertex away from K3,3. After proving the
planarity of K3,2, we are already halfway to the problem of proving cr(K3,3) = 1.

When choosing sub-problems, we generally do not want to pick a sub-problem that
is too small or too specific compared to the problem we want to solve, otherwise, the
results we derive might prove to be unrelated, or unhelpful to the original problem.
On the other hand, when the sub-problem is chosen well, the problem might already
be nearly finished. Sometimes figuring out what sub-results to prove is harder than
actually proving them!

At this point, the reader might be dissatisfied with the amount of rigor present in
the above solutions. We will come back with a more rigorous approach to these two
problems, proving that cr(K5) and cr(K3,3) are both 1, in the next section, where we
develop the Euler characteristic.

3 The Euler characteristic

Readers familiar with the Euler characteristic will recognize its definition in polyhedra.
Indeed, it is a well-known result that in any convex polyhedron, the number of vertices
minus the number of edges plus the number of faces is equal to two. In formula form,
we have V − E + F = 2, where V is the number of vertices, E is the number of edges,
and F is the number of faces.

In this equation, the constant V −E + F is known as the Euler characteristic, and
is usually denoted by χ. The Euler characteristic of convex polyhedra, as above, is
2, while non-convex polyhedra usually have a variety of Euler characteristics. Since
χ = 2 for any convex polyhedron, we can use Euler’s characteristic to prove that there
are only five Platonic solids, which is presented as further reading. [3]
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But how does this relate to graphs? Observe the two diagrams below. The left
diagram is a drawing of a cube, while the right diagram is the same graph as the left
after rearranging the vertices.

Notice that the graph is planar – in other words, if we represent the vertices and
edges of a cube as a graph, we produce a planar graph. The faces of the cube also
have analogous “faces” in the graph: the regions enclosed by edges, of which both
graphs have six (taking care to count the large, external region as a face).

Thus both the cube and its graph have the same Euler characteristic: 2. Notice
further that K4 is a graph of the tetrahedron, so using an analogous definition for
faces, K4 has an Euler characteristic of 2. A little more experimentation will show
that the octahedron also has a planar graph, and so does the dodecahedron – so these
graphs have an Euler characteristic of 2 as well.

This gives us the inspiration to examine the Euler characteristic for planar graphs,
after defining a face. We define a face in a graph as the mutually exclusive regions
enclosed by edges. Using this definition, one can be lead to the natural conjecture
that, for planar graphs, χ = 2. We will set out to prove this fact using induction. The
reader will do well to try an inductive proof of his own before reading the proof below.

Problem 5. Show that the Euler characteristic for planar graphs is 2.

Proof. Some definitions first: a cycle is a series of vertices that start and end with the
same vertex, such that each consecutive pair of vertices is connected by an edge. A
tree is a graph that does not have any cycles.
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We will proceed by induction on F , the number of faces. The base case, when F = 1,
is when the graph is a tree, for which V = E + 1. For the induction step, suppose
that χ = 2 for all planar graphs with F faces. Suppose we have a graph with F + 1
faces. We choose an edge that has two distinct faces on either side, and remove that
edge. This edge exists until the graph is not a tree – if it did not exist, that meant all
edges have the same face on either side, meaning the graph is a tree. This reduces the
number of edges by 1 and the number of faces by 1, which keeps χ constant.

The main idea in this proof is the use of induction. Induction is a very helpful tool,
which appears often in mathematical proofs. A proof of the Euler characteristic can
also be done through induction on the number of vertices, or induction on the number
of edges, several of which are presented as further reading. [7]

In general, when doing induction on combinatorial problems, we want to choose an
object with specific properties. In this case, we chose an edge that has a distinct face
on either side, and took that out, rather than just any edge. When inducting in a
graph theory problem, for example, we might choose to take out the vertex with the
highest or lowest degree.

We use the Euler characteristic to present a formal proof of cr(K3,3) = 1. The idea
is to use the Euler characteristic to find bounds on F , then looking for a contradiction.
The interested reader should try this out before reading the proof presented below.

Problem 6. Use the Euler characteristic to provide an alternate proof for cr(K3,3) = 1.

Proof. Prove the upper bound as previously, by drawing a diagram. To prove the
lower bound, we note that in K3,3, each face must have at least four edges. If a face
had only three edges, then there would be three edges that form a triangle, but there
aren’t any triangles in K3,3.

We use the fact that χ = 2: since K3,3 has 6 vertices and 9 edges, a planar drawing
will have 5 faces. Each face has at least four edges, so we get at least 20 edges – but
we’ve overcounted, since each edge has a face on either side. Thus the graph must
have at least 10 edges, contradicting the fact that it has 9 edges.

Again, the idea was a proof by contradiction. Here we achieve a contradiction
through the technique of counting in two ways. We count the number of edges E, first
by looking at the graph itself, and second by using the fact that the number of faces
and edges are related, the same technique that will be used in the next problem.

From this problem, we see that the number of faces and edges in a planar graph
are related. Each face is enclosed by at least three edges, and each edge has at most
two faces on either side. This idea is used in the problem below, for which the same
technique is used, but generalized to any planar graph. The reader should keep the
method used in the previous problem in mind, and try out the next problem before
reading the solution presented.

Problem 7. For a planar graph, show that E ≤ 3V − 6.

Proof. In a planar graph, a face is enclosed by at least three edges, and an edge has at
most two faces on either side. Thus you have the inequality 2E ≥ 3F – the number of
edges would be at least thrice the number of faces, but we overcounted because an edge
has at most two faces on either side. Using this and the fact that χ = V −E + F = 2,
it follows after some manipulation that E ≤ 3V − 6.
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Once again, in this proof we used the technique of counting in two ways: counting
the number of edges E, first by using the fact that the number of edges and faces are
related, and second, finishing off with an application of the Euler characteristic.

The above inequality is quite useful, as we will see later on in the proof of the crossing
number inequality. Meanwhile, we use this inequality to obtain a more rigorous proof
of a previous result. The reader is advised once again to try this problem out, as it is
a straightforward application of the above inequality.

Problem 8. Use the above inequality to provide an alternate proof for cr(K5) = 1.

Proof. Prove the upper bound as previously, by drawing a diagram. To prove the
lower bound, consider K5: it has 5 vertices and 10 edges. But this contradicts our
above result: for K5, E > 3V − 6, so it must follow that K5 is not planar.

With this problem, we have two rigorous proofs of the non-planarity of K5 and K3,3.
It turns out that these are the only two graphs we have to prove the non-planarity of
in order to prove the non-planarity of any other non-planar graph. We will see this in
the next section, where we discuss two theorems involving both of these graphs.

4 Kuratowski’s and Wagner’s theorems

Two interesting planarity results are Kuratowski’s and Wagner’s theorems. To discuss
them, we need to define some preliminary terms first.

We say a graph H is a subgraph of another graph G if the vertices and edges of H
are subsets of the vertices and edges of G. For example, K4 is a subgraph of K5, and
K2,3 is a subgraph of K3,3.

A subdivision of an edge is the result of adding a new vertex in an existing edge.
More specifically, suppose an edge connects vertices A and B. A subdivision of this
edge would be the result of adding a new vertex C, and then drawing edges from A to
C, and from C to B. A subdivision of a graph is any graph resulting from subdivisions
of its edges.

A B A’ C B’

An edge contraction is an operation which removes an edge of a graph while merging
the vertices it used to connect. In other words, it is the result of replacing the edge
joining vertices A and B, as well as the vertices themselves, with a new vertex C, such
that C is joined to all the vertices A and B were joined to.

We say a graph H is a minor of another graph G if we can obtain H from G after
contracting some edges, deleting some edges, and afterwards deleting the vertices not
joined to any other vertices. In the following diagram, the first graph is a minor of a
second. The third graph illustrates this: the gray edge is deleted, the dashed edges
are contracted, and the vertices that aren’t joined to any other vertices are removed.
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Definitions aside, we can now present Kuratowski’s and Wagner’s theorems:

Theorem 9 (Kuratowski’s theorem)

A graph is planar if and only if it does not contain a subdivision of K5 or K3,3 as
a subgraph.

Theorem 10 (Wagner’s theorem)

A graph is planar if and only if neither K5 nor K3,3 is its minor.

Kuratowski’s theorem was proved in 1930 by Kazimierz Kuratowski, and the proof
is somewhat above the level of this article, and is omitted: a proof is listed as further
reading. [4] It was independently proved by Orrin Frink and Paul Smith, also in 1930,
but their proof was never published.

Wagner’s theorem was published in 1937 by Klaus Wagner, seven years after Kura-
towski’s publication. The proof is once again above the scope of this article, and a
proof is listed as further reading. [2]

These theorems are both of interest because they are quite related to one another.
Both are characterizations of planar graphs, both involving K5 and K3,3. To this
extent, we can say that K5 and K3,3 are the roots of all non-planarity: we merely
need to prove the non-planarity of both, then we can use either theorem to prove the
non-planarity of any other non-planar graph.

Observe the graph on the left in the above diagram. It has neither K5 nor K3,3 as
its subgraph, however, we note that it is a subdivision of K3,3. We note that the gray
vertex subdivides an edge, and that removing this gray vertex gives us K3,3. Therefore,
the graph on the left is not planar.

On the other hand, observe the graph on the right. It is a graph known as the
Petersen graph, one of the more well-known graphs in graph theory. We can see that
by contracting the dashed edges, we produce K5, thus K5 is a minor of the Petersen
graph, meaning it is non-planar. The interested reader can also try to prove that K3,3

is a minor of the Petersen graph for an alternate proof of non-planarity.
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5 Fáry’s theorem

Suppose we have a planar drawing of a graph. Intuitively, we can find a planar drawing
that uses only straight lines by “stretching out” the vertices, so that the curves can be
replaced with straight lines without creating crossings. One might expect that every
planar graph has a planar drawing using only straight lines.

This is, in fact, Fáry’s theorem. The proof we present of Fáry’s theorem does not
in fact use the above intuition in its proof, but it confirms it. The proof itself uses
several heuristics we have already discussed before, and we will go through these.

Fáry’s theorem was named after István Fáry, who discovered it in 1948. It was
proved independently by Klaus Wagner in 1936 and S. K. Stein in 1951. The proof we
present is a common one found in graph theory textbooks.

Define a maximally planar graph as a planar graph where we cannot add any edges
while preserving planarity. A maximally planar graph is also called a triangulation of
the plane, the reason being the following problem, which the reader can easily prove:

Problem 11. Prove that every face in a maximally planar graph is enclosed by exactly
three edges.

Proof. Suppose for the sake of contradiction that there exists a face that is enclosed by
more than three edges. Then we can draw another edge to split that face in two, while
preserving planarity, contradicting the fact that the graph is maximally planar.

We use the intuition of symmetry, that symmetric graphs are easier to work with
that non-symmetric ones. In general, symmetric objects are easier to manipulate than
asymmetric objects. Symmetric objects also have more properties than asymmetric
ones. In this case, the symmetry is through maximally planar graphs. Maximally
planar graphs are easier to work with than planar graphs, and there is a transformation
that can change a planar graph to a maximally planar one, and vice-versa: just add or
remove some edges.

Thus, we need only prove Fáry’s theorem for the case of maximally planar graphs.
Given, in general, a planar graph, we can add edges to make the graph maximally
planar. Then we prove that this maximally planar graph has a straight-line drawing,
and then remove the edges that we added in to give the original graph. Note that
removing an edge does not change the fact that we have a straight-line drawing, so
this is legal.

The idea behind Fáry’s theorem is an induction on the number of vertices of the
graph. How do we get from a maximally planar graph with V +1 vertices to a maximally
planar graph with V vertices? We drop a vertex. If we can find a straight-line drawing
of the graph with V vertices, we only need to find a place for the new vertex such that
a maximally planar graph with V + 1 vertices has a straight-line drawing as well.

We have the idea and the intuition of the proof nailed down. Now we only need
formalize it. We first prove the following useful (and interesting) theorem, that allows
us to find a place for the new vertex such that there is a straight-line drawing of it.
This is an interesting result, and the reader is once again encouraged to try and prove
this before reading our presented proof:

Problem 12 (Art gallery theorem). Given a polygon with n vertices, prove that we
can pick

⌊
n
3

⌋
points on it such that we can draw a line segment from any polygon

vertex to one of these
⌊
n
3

⌋
points without the line segment leaving the polygon.
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Proof. Triangulate the polygon, and color the vertices of the resulting triangulation
with three colors. Pick the color with the least number of vertices of that color: there
are at most

⌊
n
3

⌋
of these vertices by the pigeonhole principle. These points are such a

set of
⌊
n
3

⌋
points. For any vertex, we just pick a triangle containing that vertex, and

then pick the vertex in that triangle of the color we chose – the resulting line segment
does not escape the polygon, as it is one of the triangle’s sides.

The theorem’s colorful name comes from its original combinatorial phrasing: the
polygon is an art gallery, and the points chosen are guards. The problem was to pick
places for the guards to stand such that every point in the art gallery has at least one
guard in its line of sight.

We are nearly done. We just need to think about how to do the induction step. How
do we get from a straight-line drawing with V vertices to a straight-line drawing with
V + 1 vertices? First, we have to pick a place for the vertex. Second, we draw in the
edges connecting that vertex to the existing vertices. The second step is handled by
the art gallery theorem: if we have a polygon with less than or equal to five sides, we
can pick one point on it so that point can be connected to all of the polygon’s vertices
with straight lines.

We need a polygon with less than or equal to five sides, for the vertex to be placed
in. If we have a graph with V + 1 vertices, we need to look for a vertex connected
to not more than five other vertices, remove that vertex, use the induction to find a
straight-line drawing for V vertices, add that vertex in, and then use the art gallery
theorem to find a straight-line drawing. But there is a catch: this vertex can’t be
connected to any of the outer faces, because otherwise we can’t use the art gallery
theorem.

To deal with this catch, we pick three vertices before hand that would form the outer
face of the straight-line drawing. This makes our argument even stronger: instead
of finding a straight-line drawing of V , our induction wants to show that there is a
straight-line drawing of V with three selected vertices that would be the outer face of
that drawing.

Once we find a point connected to less than or equal to five vertices, and not
connected to any of the three vertices that would form the outer face, we can do the
induction step on that vertex. The trouble is, is there always such a vertex? For a
planar graph, yes: we use a result from the previous sections to prove so. The reader
is encouraged to try to prove the following:

Problem 13. Any planar graph has a vertex connected at most five other vertices,
not connected to three vertices chosen beforehand.
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Proof. Let the graph have V vertices. Suppose otherwise: that all V − 3 vertices are
connected to at least six other vertices. This does not count the three vertices chosen,
which have to be connected to at least one other vertex, as the graph is connected.

We then count the total number of edges: E > 6(V−3)
2 + 3 = 3V − 6. The first term

comes from multiplying the number of vertices by six, then dividing by two as we
double counted. The second term comes from the three vertices we picked, which have
to be connected to at least one other vertex each. Note that the inequality is strict: if
equality held, we wouldn’t have a planar graph.

Now this inequality E > 3V − 6 contradicts the earlier proven fact, that for planar
graphs, E ≤ 3V −6. Thus there exists a vertex connected to at most five other vertices,
not connected to the three vertices we picked.

At this point, our proof of Fáry’s theorem is pretty much done. We just need to
write it up nicely, which the reader is encouraged to try out:

Problem 14 (Fáry’s theorem). Any planar graph has a straight line drawing.

Proof. We prove a stronger statement: that every maximally planar graph has a
straight-line drawing that has three vertices picked beforehand as the outer face. We
do induction on the number of vertices. The base case is when the graph has three
vertices, the proof is trivial.

Suppose a graph G has V vertices, and assume it is maximally planar. If it is
not maximally planar, we add edges to make it maximally planar, and then we can
delete them afterwards. Choose three vertices that would form the outer face of the
straight-line drawing.

For the induction step, pick any vertex v such that at most five vertices are connected
to v by an edge, and v is not connected to the three vertices we picked beforehand,
which is possible by a previous result. We remove v from the graph G to create another
graph, G′.

We triangulate the face created by removing v. This creates a maximally planar
graph with one less vertex than G, which can be drawn with straight lines by induction
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hypothesis. We remove the edges created by triangulation, then put back v in this
face, choosing the

⌊
5
3

⌋
= 1 point given by the art gallery theorem. Then connect v to

the vertices of this face, giving back a straight-line drawing of G.

6 The crossing number inequality

Intuitively, if we have a graph, fix the number of vertices, and increase the number of
edges, the graph should become “increasingly non-planar”: the more edges we add, the
more crossings the graph should have. Our intuition says that planarity is dependent
on the number of edges and the number of vertices.

Such an intuition was formalized by the crossing number inequality, discovered by
Ajtai, Chvátal, Newborn and Szemerédi, and independently by Leighton. We present
a probabilistic argument here, beginning with a weak bound of cr(G), to a stronger
bound with the requirement of E ≥ 4V . Much discussion is borrowed from [6].

We begin with a lemma, a corollary of the fact that, for planar graphs, E ≤ 3V − 6:

Problem 15. For any graph G, show that cr(G) ≥ E − 3V .

Proof. Note that every crossing is made by two edges: if a crossing is only made
by one edge in an α shape, then we can just flip the edge to reduce the number of
crossings. For each crossing, we remove one of the edges over that crossing. This
makes a new graph G′ with at most E′ = E − cr(G) edges, and has the same number
V of vertices. But then the operation makes G′ planar: all of its crossings are gone!
Since G′ is planar, it satisfies the inequality E′ ≤ 3V ′ − 6, thus for any graph G, we
have E − cr(G) ≤ 3V − 6, or simply cr(G) ≥ E − 3V .

Now, what is the motivation for this? We are given a graph G, and we wish to find
an inequality involving cr(G), E, and V . We look back to our known results, and we
remember that, for planar graphs, E ≤ 3V − 6. But most graphs aren’t planar.

We apply the technique that Terence Tao described as amplification: given an object,
we use a transformation to make it into a new object, apply an estimate to the new
object, and see what it says about the original. In this case, like many others, we
begin with an “asymmetric” object, a graph G which is non-planar, and transform it
into something “symmetric”, a planar graph G′. We then apply what we know about
the symmetric object to deduce a fact about the asymmetric object.

Once again, the heuristic of exploiting symmetry is used. Another heuristic done in
this solution is exploiting freedom: given the freedom to delete edges, we do so. And
again, the heuristic of decomposition and recomposition appears, when we decomposed
a non-planar graph into a planar one.

We once again apply amplification, and again exploit a freedom, this time to delete
vertices. However, there is no easy symmetric way to do so – if we delete vertices
connected to crossings, we might delete edges not in crossings, which is inefficient.
Without any easy way to use symmetry, we proceed with the probabilistic method.

Theorem 16 (Crossing number inequality)

For any graph G satisfying E ≥ 4V , we have cr(G) ≥ E3

64V 2
.
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Proof. Consider the fact that cr(G) ≥ E − 3V . We randomly pick vertices to remove,
with the probability of a vertex remaining being 0 < p < 1, to create a new graph G′

with E′ edges and V ′ vertices. By the inequality, we have cr(G′) ≥ E′ − 3V ′. We use
linearity of expectation to get E(cr(G′)) ≥ E(E′)− 3E(V ′).

These are easy to compute: E(V ′) is simply pV , since each vertex has probability
p to remain in G′. For the edges, we have E(E′) = p2E, as an edge remains if both
endpoints remain in G′. Each endpoint has probability p to remain, so the probability
that an edge remains is p2.

Finally, we compute E(cr(G′)). Note that a crossing involves two edges, and thus,
four vertices. Thus the probability a crossing remains in G′ is p4, the probability that
its four vertices all remain. We get E(cr(G′)) ≤ p4cr(G), an inequality because the
current drawing may not be the optimal one.

After substituting to the inequality and dividing by p4, we get cr(G) ≥ p−2E−3p−3V .
Finally, since E ≥ 4V, it is possible to choose p such that 4p−3V = p−2E. This gives
cr(G) ≥ E3

64V 2 , which was what we wanted.

The crux idea in the proof was the probabilistic method, a tool that has found
helpful use in combinatorics, in Ramsey theory and incidence geometry, for example.
The probabilistic method is a helpful tool when it comes to olympiad-flavored problems,
and an article about it is listed as further reading. [1]

One aspect of the proof which may require motivation is the choice of p. We have
the inequality cr(G) ≥ p−2E − 3p−3V , and we wish to make this inequality sharp.
Generally, inequalities are sharp when the terms are roughly in balance, because we
get closer to the equality case. We want to make the two terms here, p−2E and 3p−3V
in balance – we want to make the latter term only slightly smaller than the former.

This is where the restriction, E ≥ 4V , comes in. This restriction was not arbitrary:
we chose the restriction so that 4p−3V = p−2E is the conclusion, and thus the two
terms we wanted to balance are fairly close to each other.

Székely wrote a paper illustrating several proofs that the crossing number inequality
gives to hard combinatorial incidence geometry theorems. [5] We present the Szemerédi-
Trotter theorem below, as its proof is one of the most elementary of Székely’s. It is a
direct application of the inequality.

Theorem 17 (Szemerédi-Trotter theorem)

Given P points and L lines, the maximum number of incidences between them is
O(L2/3P 2/3 + P + L).

Proof. Let I(P,L) = |{(p, l) ∈ P × L : p ∈ l}| be the number of incidences, or the
number of distinct pairs of points and lines (p, l) such that point p lies on line l.

We make the observation that the points and lines naturally determine a graph.
Assume for the moment that each line is incident to at least two points. We observe
that for a single line l that has n points on it, these n points have n− 1 segments in
between them. Since the sum of all the n for all lines is I(P,L) by definition, then the
sum of the number of line segments between the points is similar to I(P,L).

Thus these points and lines produce a graph with P vertices and about I(P,L)
edges. We count the number of crossings. Since two lines intersect in at most one
point, the number of crossings has to be approximately L2. Applying the crossing
number inequality gives us L2 = O(I(P,L)3/P 2), if I(P,L) is larger than P .
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This leads to I(P,L) = O(L2/3P 2/3 + P ). Then we remove our assumption that
each line is incident to at least two points, by observing that lines incident to one
point contribute at most L incidences. Thus, I(P,L) = O(L2/3P 2/3 + P + L).

7 Conclusions

We conclude with a few remarks about crossing numbers. Note that in the third
dimension, we can always draw a graph with zero crossings, but what about on other
surfaces, like toruses? We leave to the interested reader to discover that graphs which
are not planar in the Euclidean plane are planar on other surfaces.

Plenty of other developments have been found on crossing numbers that is not
discussed here. Bounds on crossing numbers have been obtained on complete bipartite
graphs and complete graphs. Improvements have been found for the crossing number
inequality: changing the condition E > 7V gives the improvement cr(G) ≥ E3

29V 2 , which
is the best known constant to date.

There are also several open problems on planar graphs that the reader can look into.
(And for the more daring and ambitious readers, open problems to attempt!) Graph
theory, unlike other fields of mathematics, has a relatively lower amount of prerequisite
knowledge required. On the other hand, it also requires far more creativity.

The writer would like to acknowledge the contributions of Sean Ty and Ivan Chan
for looking over a draft of the article. If you see an error, have a correction or an
addition, or have a question, you can reach me at cj@cjquines.com.

8 Problems

Problem 18. We know that cr(K4) = 0 and cr(K5) = 1. What about cr(K6)? Does
a similar argument work? Can you find bounds on cr(K7)?

Problem 19. What about cr(K3,4), cr(K3,5) and cr(K4,4)?

Problem 20. Three graphs are presented below. Which ones are planar and which
ones are not? Prove your claims.

Problem 21. Are K3,3 and K5 planar on a torus? What about on a Klein bottle?

Problem 22. More generally, are all graphs G such that cr(G) ≤ 1 planar on a torus?
What about on a Klein bottle? Can you come up with an example of a graph with
cr(G) ≥ 2 that is planar on a torus?

Problem 23. Even more generally, are all graphs that are planar on a torus also
planar on a Klein bottle? Why or why not?
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