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Warmup
1. Let a, b, ¢, d, and p be positive integers.
a) Prove that if a | ¢, b | d, and p = ab, then p | cd.
b) Prove that if p | ed, then there exists a and b such that a | ¢, b | d, and p = ab.

2. (Baltic 1996/6 &) Let a, b, ¢, d be positive integers such that ab = cd. Prove that a+b+c+d
is not prime.

3. (Euclid’s formula) Let a, b, ¢ be positive integers such that a? + b? = 2, ged(a,b) = 1, and a
is odd. Prove that there exists integers v and v such that ged(u,v) = 1, a = u? — v2, b = 2uv,
and ¢ = u? + v2.

The factor lemma

From here, we use the (standard) notation (a,b) = gcd(a, b).

Lemma (Factor lemma)

Let a, b, ¢, d be positive integers such that ab = cd. Then there exists positive integers p, q,r, s
such that
a=pq, b=rs, c=pr, d=gqs,

and (¢g,7) = 1.

d
Proof 1. Choose positive integers q and r such that 4 _ 7= d and (g,r) = 1. Because 4 in lowest
c r c

terms is g, there’s some positive integer p such that a = pq and ¢ = pr. Similarly, there’s some

r
positive integer s such that d = ¢s and b = rs. ]

Proof 2. As a | cd, there are positive integers p and ¢ such that p | ¢, ¢ | d, and a = pq. As p | c,
there’s a positive integer r such that ¢ = pr; similarly there’s a positive integer s such that d = gs.

As ab = cd, we can solve for b = rs. O
d
Proof 3. We claim that a = M. Indeed:
(a,b,c,d)
(a,c)(a,d) = (a?, ac, ad, cd) (distributivity)
= (a?, ac, ad, ab) (substitute ab = cd)
= a(a,b,c,d), (distributivity)

as desired. We have similar equalities for b, ¢, and d. We can then choose:

(a,d) _ (b,0)

_ _ a) __\%9 — (b.d).
p=(a,c), q wbed T @bed ° (b,d)
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Remarks
o It’s also called the factoring lemma & and (Euler’s) four number theorem . Might as well
prove it if you use it though.
o If (a,b,c,d) = 1, you also get (p,s) = 1.
e There are some generalizations I’ve never used, but it’s an interesting exercise to prove them:
— If a,c € R and b,d € Z such that ab = cd, then there exists p € R and ¢,r,s € Z such
that a = pg, b =rs, ¢ = pr, d = gs. (Induct on b.)
— Ifa1,...,a, and by, ..., b, are integers such that [[a =[] b, then there exists integers
t;; such that a; = [];¢;; and b; =[], #; ;. (Double induct.)
These are both in Erdés and Surdnyi’s Topics in the Theory of Numbers, which is a fun book.
o If these words make sense: the factor lemma holds for all UFDs, so it’s true not only in Z,
but also Zl[i], Z|w], R[X] for any UFD R (and thus R[X1,...,Xy]).
Examples

(Baltic 1996/6 &) Let a, b, ¢, d be positive integers such that ab = cd. Prove that a +b+c+d
is not prime.

Sketch 1: Write d = %2. Then
ac+bc+c?+ab  (a+c)(b+c)

a+b+c+d= ,
C C

which can’t be prime.

Sketch 2: Apply factor lemma and choose
a=pq, b=rs, c=pr, d=qgs.

Then a+b+c+d= (p+ s)(q+r), which can’t be prime.

. (Euclid’s formula) Let a, b, ¢ be positive integers such that a? + b? = ¢, (a,b) = 1, and a is

odd. Prove that there exists integers v and v such that (u,v) =1, a = u? — v?, b = 2uv, and
2 2
c=u"+ v

Sketch: From b? = (¢ — a)(c + a), apply factor lemma and choose
b=pg=rs, c—a=pr, c+a=qs.
From pq = rs, apply factor lemma again and choose
p=wr, q=yYyz, r=wy, S=2Iz.

Then ) )
L qs—pr  xyz*—wry xY , o 9

a = 5 = 5 = ? (Z —w ) .

Because a is odd, considering modulo 4 shows that 2 | zy. We also get that zy | 2a. Combined

with zy | b and (a,b) = 1, we get that 2y = 2. Thus a = 2% — w?, b = 2zw, and ¢ = 2% + w?.



https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYS8wL2I3Njk1MjVjOTdjM2U5MWIxY2Q0NTkyZDQ3ZTVhNGVkMmYzOGMyLnBkZg==&rn=ZmFjdG9yLnBkZg==
https://math.stackexchange.com/questions/3771853/four-number-theorem-any-two-factorizations-ab-cd-have-a-common-refineme
https://artofproblemsolving.com/community/c6h220674p1223920
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3. (Korea Final 2016/3 ¢4) Prove that £ — — + y — — = 4 has no solutions over the rationals.
€T Yy
Sketch: Write x = £,y = 7 in lowest terms. The given equation is
a’ch — b?ed + abc® — abd? = 4abed.
Because a divides the RHS, it must divide the LHS, and thus a | b*>cd. But (a,b) = 1, so
a | ed. Similarly, b | ed, ¢ | ab, d | ab. Because (a,b) = (¢,d) = 1, we get ab | c¢d and cd | ab, so
ab = *cd; for simplicity we consider only the positive case. Apply factor lemma and choose
a=pg, b=rs, c=pr, d=gs, (¢r)=1
The given equation becomes
(P> — s*)(q® +17) = dpgrs.
The RHS is 0 modulo 4. Because (q,7) = 1, ¢> + 72 # 0 (mod 4). Thus p? — s> =0 (mod 4),
so p=s (mod 2). So in fact p?> — s> =0 (mod 8), and the RHS is also 0 modulo 8, so 2 | gr.
WLOG, ¢ is even and 7 is odd. Via similar arguments with a, b, ¢, d, we get 4qr | p?> — s® and
ps | ¢ + 12, and these are in fact equalities. Now
p? — 52 p—Ss P+ s
T = =
1 1 2 2 )
so setting u = ’5° and v = pQﬁ, apply factor lemma on ¢r = uv and set
u=~kl, v=mn, q=km, r=4In, (¢ m)=1.
Then
ps = q2 + 72
(k€ 4+ mn)(mn — kl) = k>m? + *n?
(m? — £2)n? = k*(m? + (%),
and because (¢,m) = 1, we get (m? — £2, m? + (2) = 1, thus k? = m? — ¢2 and n? = m? + (2.
We then get n* — k* = (26m)?, which has no solutions by Fermat’s right triangle theorem.
Problems

These are mostly direct applications.

1.

(ELMO 2009/1 &) Let a,b,c be positive integers such that a? — bc is a square. Prove that
2a 4 b+ c is not prime. Hint: 7

. (Russia 2015/10/5 &) A square grid can be partitioned into n congruent tiles, each of size k.

Prove that it is possible to partition it into k& congruent tiles, each of size n. Hint: 4

. (Moldova TST 2004/1 &) Suppose that a natural number n can be written as a sum of two

squares of positive naturals in two different ways, in equations n = a? + b> = ¢ + d2. Show
that the number n is composite. Hint: 2

. (&2) Positive integers a, b, ¢, d satisfy ab = cd and a + b+ c+d = (a — b)%. Prove that 4c + 1 is

a perfect square. Hints: 5 11

. (IMO 2001/6 &) Let a > b > ¢ > d be positive integers and suppose that

ac+bd=(b+d+a—c)b+d—a+c).

Prove that ab + cd is not prime. Hints: 12 3


https://artofproblemsolving.com/community/c6h1214200p6032947
https://artofproblemsolving.com/community/c6h514439p2890146
https://artofproblemsolving.com/community/c6h1126565p5209254
https://artofproblemsolving.com/community/c6h304361p1972907
https://artofproblemsolving.com/community/c6h3087478p27901399
https://artofproblemsolving.com/community/c6h17474p119217
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Other problems

These are less direct applications. Not necessarily harder than the last section.

6.

10.

11.

(USA TSTST 2018/4(a) &) For an integer n > 0, denote by F(n) the set of integers m > 0
for which the polynomial p(x) = 22 + mx + n has an integer root. Let S denote the set of
integers n > 0 for which F(n) contains two consecutive integers. Show that S is infinite but

1
g — <1.
nESn

Hints: 18 10

Remark: Part (b) is: prove that there are infinitely many positive integers n such that F(n)
contains three consecutive integers. But it’s almost a different problem.

(USA TST 2021/1 &) Determine all integers s > 4 for which there exist positive integers a, b,
¢, d such that s = a + b+ ¢+ d and s divides abc + abd + acd + bed. Hints: 16 9

(IMO 1984/6 ©7) Let a,b, c,d be odd integers such that 0 < a < b < ¢ < d and ad = be. Prove
that if a +d = 2¥ and b+ ¢ = 2™ for some integers k and m, then a = 1. Hints: 17 14

. (China TST 2006/7/3— &) Find the largest positive integer M such that there exists integers

a,b, c,d satisfying ad =bcand M <a <b<c<d< M+ 49. Hints: 19 1

(ISL 2018/N5 &) Four positive integers z,y, z and ¢ satisfy the relations
zy—z2zt=x+y==z+t.

Is it possible that both zy and zt are perfect squares? Hints: 21 8 15

(RMM 2023/1 ) Determine all prime numbers p and all positive integers x and y satisfying
23 4 93 = p(zy + p). Hints: 620 13


https://artofproblemsolving.com/community/c6h1664165p10571361
https://artofproblemsolving.com/community/c6h2470467p20672573
https://artofproblemsolving.com/community/c6h26504p165811
https://artofproblemsolving.com/community/c6h97507p550638
https://artofproblemsolving.com/community/c6h1876761p12752815
https://artofproblemsolving.com/community/c6h3024159p27195228
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Hints

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

. The key claim is M works iff there’s m,n such that M < mn and (m + 1)(n+ 1) < M + 49.
. Factor lemma, then solve for a, b in terms of p, g, r, s.

. Apply the factor lemma to get p,q,r,s. Factor 3(ab+ cd), and conclude.

. Consider the area of the square.

. Factor lemma, then set m = p+ s, n = ¢ + r. Take square roots.

. Factor lemma to get a,b,c,d, such that x +y = ab, 2% — xy + y?> = cd,p = ac,zy + p = bd.

There’s two cases. Show a = p and ¢ = 1 gives a contradiction, for size reasons.

Factor a? — be = n2.

. Solve for x, y, a, and substitute into xy = a?. Factor this as (pgrs)? = (something)(something).

. If s is prime, show that ab = ¢d (mod p). Do something similar to the first solution of Baltic

1996//6.

1
pp—1)g(g—1)

Show the sum is at most Z
p,g>1

Find a quadratic equation that has m/n as a rational root.

Manipulate to get (a — b)(something) = (¢ + d)(something).

Show d < 3 and d > 3 leads to no solutions, for size reasons. Conclude.

Do casework on each of the factors modulo 4.

Use size arguments on p, ¢, r, s and conclude.

If s is composite, pick a, b, ¢, d equal to pq,rs, pr, gs, then factor.

Factor lemma, then factor a +b+c+dand a—b—c+d.

Use Vieta’s to get an ab = cd which you can factor lemma on.

Suppose M works. Use factor lemma to rewrite a and d, then relate to the inequalities.

When a = 1 and ¢ = p, use (x +y)? — 32y = 2% — 2y + y>. Show b | p leads to a contradiction,
therefore b | d — 3.

Let zy = a? and 2t = b%. Apply factor lemma on (a — b)(a +b) = (z — 2)(z — y).
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Sketches

1.

. The area of the square is s

We have a? —bc = n? or (a—n)(a+n) = be. Apply Baltic 1996/6 to get (a—n)+(a+n)+b-+c
is not prime.

2 = nk. Apply factor lemma to choose s = ab = cd, n = ac, k = bd.

Tile the square with a X ¢ rectangles.

. WLOG a > ¢, then (a —¢)(a+c¢) = (d — b)(d + b). Apply factor lemma to choose a — ¢ = pg,

at+c=rs,d—b=pr,d+b=gs. Thena= P p= 2P and 4n = (p® + s?)(¢* +r?). If
n was prime, then WLOG n | ¢> + %, and p? + s? is 2 or 4; both cases are impossible.

. Apply factor lemma to choose a = pq, b=1rs,d=pr,c=gqs. Set m =p+s,n=q+r.

The given equation becomes mn = (gm — sn)?. Write m = (m, n)m’?

, n = (m, n) . Take
square roots to get m'n’ = gm> — sn>. Then z = "% is a rational root of the quadratlc

gz?> Fx — s = 0. Thus its discriminant ($1)2 —4q(—s) = 4c+ 1 is a perfect square.

. Rearrange to get

ac+bd = (b+d)* — (a—c)?
a’>—b>—bd+ad=d>—c+ac+ad
(a—b)(a+b+d)=(d+c)(d—c+a).

Apply factor lemma to choose a —b=pq, a+b+d=rs,d+c=pr,d—c+a=gs. Add
everything to get 3(a + d) = pq + rs + pr + gs. Solve for a,b, ¢, d:

3a = 2pq + 2rs — pr — gs, 3b = —pq + 2rs — pr — gs,
3¢ = pq+rs+pr—2gs, 3d = —pq — s+ 2pr + 2gs.

Do more bashing to get

3(ab + cd) = —p*¢* + 125> + p*r? — ¢°s* + pgPs — pris
= (r? = ¢*)(p* + 5> — ps).

. Say 22+ mz +n = (xr+a)(x+b) and 22 + (m+ 1)z +n = (z +¢)(z +d). Then n = ab = cd,

and by factor lemma choose a =pq, b=rs,c=pr,d=¢qs. Also, m+1=a+b+1=c+d,
so (p — s)(¢ — r) = 1. Both factors here must be 1, so n = p(p — 1)g(q¢ — 1). Then

S0t Y o - G ) (S ) -

nGS P, q>1 p>1 g>1

by telescoping.

. It’s all composite s. If s is composite, write s = mn. Set (p,q,7,s) = (1,1,m —1,n — 1) and

a=7pq,b=rs, ¢c=pr,d=gs. This works because s=a+b+c+d=(p+s)(qg+r) =mn,
and ). . abc = ab(c +d) + cd(a + b) = pgrs(a + b+ c + d) is divisible by s = mn = pgrs.

If s is prime, then a + b+ c+d =0 (mod p), and p | ab(c + d) + cd(a + b). And RHS here is
ab(—a —b) + cd(a+b) = (a + b)(cd — ab), so ab = c¢d (mod p). Again using a similar trick to
Baltic 1996/6, write d = %b (mod p) and get %C(a% =0 (mod p), contradiction.
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8.

10.

11.

By factor lemma choose a = pq, d = rs, b = pr, ¢ = gs; then p < s, ¢ < r and these are all
odd. Also,

2m<2k—m+1):a+b+c+d:<3+p)(r+q>7
2m(2kfm_1):a—b—c-i-d:(S_p)(r_Q)

Now s = p and r & ¢ are even, so we have four cases modulo 4:

o If4|s+pand4|r+gq, then4dts—pand4{r—gq, som =2, which is impossible for
size reasons.

o Similarly, we can’t have 4 | s —p and 4 | r — gq.

o If4fs+pand4{r—gq,then 2! | s—pand 2! | r+¢q. Thus 2(s—p) > 2™ = pr+gs,
so ¢ = 1; similarly 2(r +1) > 2™ =pr+4g¢s,sop=1, and a = pg = 1.

o Similarly, in the remaining case we also get a = 1.

. We claim M works if there’s m,n such that M < mn and (m + 1)(n+ 1) < M + 49.

(=) Use factor lemma to choose a = pq, d = rs, b = pr, ¢ = ¢s. Then a < b means ¢ < r,
and b < d means p < s. Then M <a <pg < (s—1)(r—1), and we can take m = s — 1 and
n=r—1.

(<) WLOG m < n, then take (p,q,7,s) = (m,n,n+1,m+ 1) to get a, b, c, d.

By the claim, m +n < 48, and M < mn < 242, and indeed 24? works if we take m = n = 24.

No. FTSOC zy = a? and zt = b?, and WLOG =z is largest. Then (a — b)(a + b) = 2y —
z(x4+y—2)=(z—x)(z—y). Apply factor lemma to get z —x =pq, z —y =rs, a — b = pr,
a+ b = gs. Note that « +y = a® — b> = pgrs, so we can solve to get

2 = —pq +rs+pgrs, 2y =pq—rs+pqrs, 2a=pr+gs.

Substitute into (2x)(2y) = (2a)? to get (pgrs)? = (p*+52)(¢>+72). Now we do size arguments:
by AM-GM the minimum is 1, so WLOG p = 1, and then we get ¢*r?2 < 2(¢? +1?),s0 s =1
and g = r = 2, contradiction.

Apply factor lemma and write x +y = ab, 2% — zy + y?> = cd, p = ac, xy + p = bd. As p is
prime, we have two cases.

If a = pand ¢ =1, then 22 — zy + 3> = d and d > xy by AM-GM. Then p > (b — 1)zy, and
x 4y > b(b — 1)y, which is impossible if b > 1 for size reasons. Thus b =1, so p = z + y,
and p = (x — y)?, which is a contradiction.

Thus @ = 1 and ¢ = p. From (z +y)? — 32y = 2® — xy + y?, we get b> — 3bd = p(d — 3),
and b divides the LHS, so it divides the RHS. If b | p, then from zy + p = bd we get p | xy,
contradiction. Thus b | d — 3. We have three cases. If d < 3, then b = 2, which leads to no
solutions. If d > 3, then d —3 > b and d > b = x +y. But then

xy+p<xy+pd_x +y
rT+y — TH+Yy T4y

d=

contradiction. The remaining case is d = 3, whence (z + y)? — 3xy = 22 — ry + y? becomes

b2 —9b +3p = 3p, and b = 9. Given that (2,9) = 1 and = +y = b, we can just check all
possible x, y.



