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Warmup

1. Let a, b, c, d, and p be positive integers.
a) Prove that if a | c, b | d, and p = ab, then p | cd.
b) Prove that if p | cd, then there exists a and b such that a | c, b | d, and p = ab.

2. (Baltic 1996/6 ) Let a, b, c, d be positive integers such that ab = cd. Prove that a+ b+ c+ d
is not prime.

3. (Euclid’s formula) Let a, b, c be positive integers such that a2 + b2 = c2, gcd(a, b) = 1, and a
is odd. Prove that there exists integers u and v such that gcd(u, v) = 1, a = u2 − v2, b = 2uv,
and c = u2 + v2.

The factor lemma

From here, we use the (standard) notation (a, b) = gcd(a, b).

Lemma (Factor lemma)
Let a, b, c, d be positive integers such that ab = cd. Then there exists positive integers p, q, r, s
such that

a = pq, b = rs, c = pr, d = qs,

and (q, r) = 1.

Proof 1. Choose positive integers q and r such that a

c
=

d

b
=

q

r
and (q, r) = 1. Because a

c
in lowest

terms is q

r
, there’s some positive integer p such that a = pq and c = pr. Similarly, there’s some

positive integer s such that d = qs and b = rs.

Proof 2. As a | cd, there are positive integers p and q such that p | c, q | d, and a = pq. As p | c,
there’s a positive integer r such that c = pr; similarly there’s a positive integer s such that d = qs.
As ab = cd, we can solve for b = rs.

Proof 3. We claim that a =
(a, c)(a, d)

(a, b, c, d)
. Indeed:

(a, c)(a, d) = (a2, ac, ad, cd) (distributivity)
= (a2, ac, ad, ab) (substitute ab = cd)
= a(a, b, c, d), (distributivity)

as desired. We have similar equalities for b, c, and d. We can then choose:

p = (a, c), q =
(a, d)

(a, b, c, d)
, r =

(b, c)

(a, b, c, d)
, s = (b, d).

https://artofproblemsolving.com/community/c6h220674p1223920
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Remarks

• It’s also called the factoring lemma and (Euler’s) four number theorem . Might as well
prove it if you use it though.

• If (a, b, c, d) = 1, you also get (p, s) = 1.

• There are some generalizations I’ve never used, but it’s an interesting exercise to prove them:
– If a, c ∈ R and b, d ∈ Z such that ab = cd, then there exists p ∈ R and q, r, s ∈ Z such

that a = pq, b = rs, c = pr, d = qs. (Induct on b.)
– If a1, . . . , an and b1, . . . , bn are integers such that

∏
a =

∏
b, then there exists integers

ti,j such that ai =
∏

j ti,j and bj =
∏

i ti,j . (Double induct.)
These are both in Erdős and Surányi’s Topics in the Theory of Numbers, which is a fun book.

• If these words make sense: the factor lemma holds for all UFDs, so it’s true not only in Z,
but also Z[i], Z[ω], R[X] for any UFD R (and thus R[X1, . . . ,Xn]).

Examples

1. (Baltic 1996/6 ) Let a, b, c, d be positive integers such that ab = cd. Prove that a+ b+ c+ d
is not prime.
Sketch 1: Write d = ab

c . Then

a+ b+ c+ d =
ac+ bc+ c2 + ab

c
=

(a+ c)(b+ c)

c
,

which can’t be prime.
Sketch 2: Apply factor lemma and choose

a = pq, b = rs, c = pr, d = qs.

Then a+ b+ c+ d = (p+ s)(q + r), which can’t be prime.

2. (Euclid’s formula) Let a, b, c be positive integers such that a2 + b2 = c2, (a, b) = 1, and a is
odd. Prove that there exists integers u and v such that (u, v) = 1, a = u2 − v2, b = 2uv, and
c = u2 + v2.
Sketch: From b2 = (c− a)(c+ a), apply factor lemma and choose

b = pq = rs, c− a = pr, c+ a = qs.

From pq = rs, apply factor lemma again and choose

p = wx, q = yz, r = wy, s = xz.

Then
a =

qs− pr

2
=

xyz2 − w2xy

2
=

xy

2

(
z2 − w2

)
.

Because a is odd, considering modulo 4 shows that 2 | xy. We also get that xy | 2a. Combined
with xy | b and (a, b) = 1, we get that xy = 2. Thus a = z2 − w2, b = 2zw, and c = z2 + w2.

https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYS8wL2I3Njk1MjVjOTdjM2U5MWIxY2Q0NTkyZDQ3ZTVhNGVkMmYzOGMyLnBkZg==&rn=ZmFjdG9yLnBkZg==
https://math.stackexchange.com/questions/3771853/four-number-theorem-any-two-factorizations-ab-cd-have-a-common-refineme
https://artofproblemsolving.com/community/c6h220674p1223920
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3. (Korea Final 2016/3 ) Prove that x− 1

x
+ y − 1

y
= 4 has no solutions over the rationals.

Sketch: Write x = a
b , y = c

d in lowest terms. The given equation is
a2cb− b2cd+ abc2 − abd2 = 4abcd.

Because a divides the RHS, it must divide the LHS, and thus a | b2cd. But (a, b) = 1, so
a | cd. Similarly, b | cd, c | ab, d | ab. Because (a, b) = (c, d) = 1, we get ab | cd and cd | ab, so
ab = ±cd; for simplicity we consider only the positive case. Apply factor lemma and choose

a = pq, b = rs, c = pr, d = qs, (q, r) = 1.

The given equation becomes
(p2 − s2)(q2 + r2) = 4pqrs.

The RHS is 0 modulo 4. Because (q, r) = 1, q2 + r2 6≡ 0 (mod 4). Thus p2 − s2 ≡ 0 (mod 4),
so p ≡ s (mod 2). So in fact p2 − s2 ≡ 0 (mod 8), and the RHS is also 0 modulo 8, so 2 | qr.
WLOG, q is even and r is odd. Via similar arguments with a, b, c, d, we get 4qr | p2 − s2 and
ps | q2 + r2, and these are in fact equalities. Now

qr =
p2 − s2

4
=

(
p− s

2

)(
p+ s

2

)
,

so setting u = p−s
2 and v = p+s

2 , apply factor lemma on qr = uv and set
u = k`, v = mn, q = km, r = `n, (`,m) = 1.

Then
ps = q2 + r2

(k`+mn)(mn− k`) = k2m2 + `2n2

(m2 − `2)n2 = k2(m2 + `2),

and because (`,m) = 1, we get (m2 − `2,m2 + `2) = 1, thus k2 = m2 − `2 and n2 = m2 + `2.
We then get n4 − k4 = (2`m)2, which has no solutions by Fermat’s right triangle theorem.

Problems

These are mostly direct applications.

1. (ELMO 2009/1 ) Let a, b, c be positive integers such that a2 − bc is a square. Prove that
2a+ b+ c is not prime. Hint: 7

2. (Russia 2015/10/5 ) A square grid can be partitioned into n congruent tiles, each of size k.
Prove that it is possible to partition it into k congruent tiles, each of size n. Hint: 4

3. (Moldova TST 2004/1 ) Suppose that a natural number n can be written as a sum of two
squares of positive naturals in two different ways, in equations n = a2 + b2 = c2 + d2. Show
that the number n is composite. Hint: 2

4. ( ) Positive integers a, b, c, d satisfy ab = cd and a+ b+ c+ d = (a− b)2. Prove that 4c+ 1 is
a perfect square. Hints: 5 11

5. (IMO 2001/6 ) Let a > b > c > d be positive integers and suppose that
ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime. Hints: 12 3

https://artofproblemsolving.com/community/c6h1214200p6032947
https://artofproblemsolving.com/community/c6h514439p2890146
https://artofproblemsolving.com/community/c6h1126565p5209254
https://artofproblemsolving.com/community/c6h304361p1972907
https://artofproblemsolving.com/community/c6h3087478p27901399
https://artofproblemsolving.com/community/c6h17474p119217
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Other problems

These are less direct applications. Not necessarily harder than the last section.

6. (USA TSTST 2018/4(a) ) For an integer n > 0, denote by F(n) the set of integers m > 0
for which the polynomial p(x) = x2 +mx + n has an integer root. Let S denote the set of
integers n > 0 for which F(n) contains two consecutive integers. Show that S is infinite but∑

n∈S

1

n
≤ 1.

Hints: 18 10

Remark: Part (b) is: prove that there are infinitely many positive integers n such that F(n)
contains three consecutive integers. But it’s almost a different problem.

7. (USA TST 2021/1 ) Determine all integers s ≥ 4 for which there exist positive integers a, b,
c, d such that s = a+ b+ c+ d and s divides abc+ abd+ acd+ bcd. Hints: 16 9

8. (IMO 1984/6 ) Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove
that if a+ d = 2k and b+ c = 2m for some integers k and m, then a = 1. Hints: 17 14

9. (China TST 2006/7/3− ) Find the largest positive integer M such that there exists integers
a, b, c, d satisfying ad = bc and M ≤ a < b ≤ c < d ≤ M + 49. Hints: 19 1

10. (ISL 2018/N5 ) Four positive integers x, y, z and t satisfy the relations

xy − zt = x+ y = z + t.

Is it possible that both xy and zt are perfect squares? Hints: 21 8 15

11. (RMM 2023/1 ) Determine all prime numbers p and all positive integers x and y satisfying
x3 + y3 = p(xy + p). Hints: 6 20 13

https://artofproblemsolving.com/community/c6h1664165p10571361
https://artofproblemsolving.com/community/c6h2470467p20672573
https://artofproblemsolving.com/community/c6h26504p165811
https://artofproblemsolving.com/community/c6h97507p550638
https://artofproblemsolving.com/community/c6h1876761p12752815
https://artofproblemsolving.com/community/c6h3024159p27195228
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Hints

1. The key claim is M works iff there’s m,n such that M ≤ mn and (m+ 1)(n+ 1) ≤ M + 49.

2. Factor lemma, then solve for a, b in terms of p, q, r, s.

3. Apply the factor lemma to get p, q, r, s. Factor 3(ab+ cd), and conclude.

4. Consider the area of the square.

5. Factor lemma, then set m = p+ s, n = q + r. Take square roots.

6. Factor lemma to get a, b, c, d, such that x + y = ab,x2 − xy + y2 = cd, p = ac,xy + p = bd.
There’s two cases. Show a = p and c = 1 gives a contradiction, for size reasons.

7. Factor a2 − bc = n2.

8. Solve for x, y, a, and substitute into xy = a2. Factor this as (pqrs)2 = (something)(something).

9. If s is prime, show that ab ≡ cd (mod p). Do something similar to the first solution of Baltic
1996/6.

10. Show the sum is at most
∑
p,q>1

1

p(p− 1)q(q − 1)
.

11. Find a quadratic equation that has m/n as a rational root.

12. Manipulate to get (a− b)(something) = (c+ d)(something).

13. Show d < 3 and d > 3 leads to no solutions, for size reasons. Conclude.

14. Do casework on each of the factors modulo 4.

15. Use size arguments on p, q, r, s and conclude.

16. If s is composite, pick a, b, c, d equal to pq, rs, pr, qs, then factor.

17. Factor lemma, then factor a+ b+ c+ d and a− b− c+ d.

18. Use Vieta’s to get an ab = cd which you can factor lemma on.

19. Suppose M works. Use factor lemma to rewrite a and d, then relate to the inequalities.

20. When a = 1 and c = p, use (x+ y)2 − 3xy = x2 − xy+ y2. Show b | p leads to a contradiction,
therefore b | d− 3.

21. Let xy = a2 and zt = b2. Apply factor lemma on (a− b)(a+ b) = (z − x)(z − y).
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Sketches

1. We have a2−bc = n2 or (a−n)(a+n) = bc. Apply Baltic 1996/6 to get (a−n)+(a+n)+b+c
is not prime.

2. The area of the square is s2 = nk. Apply factor lemma to choose s = ab = cd, n = ac, k = bd.
Tile the square with a× c rectangles.

3. WLOG a > c, then (a− c)(a+ c) = (d− b)(d+ b). Apply factor lemma to choose a− c = pq,
a+ c = rs, d− b = pr, d+ b = qs. Then a = pq+rs

2 , b = qs−pr
2 , and 4n = (p2 + s2)(q2 + r2). If

n was prime, then WLOG n | q2 + r2, and p2 + s2 is 2 or 4; both cases are impossible.

4. Apply factor lemma to choose a = pq, b = rs, d = pr, c = qs. Set m = p + s, n = q + r.
The given equation becomes mn = (qm − sn)2. Write m = (m,n)m′2, n = (m,n)n′2. Take
square roots to get ±m′n′ = qm′2 − sn′2. Then x = m′

n′ is a rational root of the quadratic
qx2 ∓ x− s = 0. Thus its discriminant (∓1)2 − 4q(−s) = 4c+ 1 is a perfect square.

5. Rearrange to get

ac+ bd = (b+ d)2 − (a− c)2

a2 − b2 − bd+ ad = d2 − c2 + ac+ ad

(a− b)(a+ b+ d) = (d+ c)(d− c+ a).

Apply factor lemma to choose a − b = pq, a + b + d = rs, d + c = pr, d − c + a = qs. Add
everything to get 3(a+ d) = pq + rs+ pr + qs. Solve for a, b, c, d:

3a = 2pq + 2rs− pr − qs, 3b = −pq + 2rs− pr − qs,

3c = pq + rs+ pr − 2qs, 3d = −pq − rs+ 2pr + 2qs.

Do more bashing to get

3(ab+ cd) = −p2q2 + r2s2 + p2r2 − q2s2 + pq2s− pr2s

= (r2 − q2)(p2 + s2 − ps).

6. Say x2 +mx+ n = (x+ a)(x+ b) and x2 + (m+1)x+ n = (x+ c)(x+ d). Then n = ab = cd,
and by factor lemma choose a = pq, b = rs, c = pr, d = qs. Also, m+ 1 = a+ b+ 1 = c+ d,
so (p− s)(q − r) = 1. Both factors here must be 1, so n = p(p− 1)q(q − 1). Then

∑
n∈S

1

n
≤

∑
p, q>1

1

p(p− 1)q(q − 1)
=

∑
p>1

(
1

p− 1
− 1

p

)∑
q>1

1

q − 1
− 1

q

 = 1

by telescoping.

7. It’s all composite s. If s is composite, write s = mn. Set (p, q, r, s) = (1, 1,m− 1,n− 1) and
a = pq, b = rs, c = pr, d = qs. This works because s = a+ b+ c+ d = (p+ s)(q + r) = mn,
and

∑
cyc abc = ab(c+ d) + cd(a+ b) = pqrs(a+ b+ c+ d) is divisible by s = mn = pqrs.

If s is prime, then a+ b+ c+ d ≡ 0 (mod p), and p | ab(c+ d) + cd(a+ b). And RHS here is
ab(−a− b) + cd(a+ b) = (a+ b)(cd− ab), so ab ≡ cd (mod p). Again using a similar trick to
Baltic 1996/6, write d ≡ ab

c (mod p) and get (a+c)(a+d)
c ≡ 0 (mod p), contradiction.
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8. By factor lemma choose a = pq, d = rs, b = pr, c = qs; then p < s, q < r and these are all
odd. Also,

2m(2k−m + 1) = a+ b+ c+ d = (s+ p)(r + q),

2m(2k−m − 1) = a− b− c+ d = (s− p)(r − q).

Now s± p and r ± q are even, so we have four cases modulo 4:

• If 4 | s+ p and 4 | r + q, then 4 - s− p and 4 - r − q, so m = 2, which is impossible for
size reasons.

• Similarly, we can’t have 4 | s− p and 4 | r − q.
• If 4 - s+p and 4 - r−q, then 2m−1 | s−p and 2m−1 | r+q. Thus 2(s−p) ≥ 2m = pr+qs,

so q = 1; similarly 2(r + 1) ≥ 2m = pr + qs, so p = 1, and a = pq = 1.
• Similarly, in the remaining case we also get a = 1.

9. We claim M works if there’s m,n such that M ≤ mn and (m+ 1)(n+ 1) ≤ M + 49.
(⇒) Use factor lemma to choose a = pq, d = rs, b = pr, c = qs. Then a < b means q < r,
and b < d means p < s. Then M ≤ a ≤ pq ≤ (s− 1)(r − 1), and we can take m = s− 1 and
n = r − 1.
(⇐) WLOG m ≤ n, then take (p, q, r, s) = (m,n,n+ 1,m+ 1) to get a, b, c, d.
By the claim, m+ n ≤ 48, and M ≤ mn ≤ 242, and indeed 242 works if we take m = n = 24.

10. No. FTSOC xy = a2 and zt = b2, and WLOG z is largest. Then (a − b)(a + b) = xy −
z(x+ y − z) = (z − x)(z − y). Apply factor lemma to get z − x = pq, z − y = rs, a− b = pr,
a+ b = qs. Note that x+ y = a2 − b2 = pqrs, so we can solve to get

2x = −pq + rs+ pqrs, 2y = pq − rs+ pqrs, 2a = pr + qs.

Substitute into (2x)(2y) = (2a)2 to get (pqrs)2 = (p2+s2)(q2+r2). Now we do size arguments:
by AM–GM the minimum is 1, so WLOG p = 1, and then we get q2r2 ≤ 2(q2 + r2), so s = 1
and q = r = 2, contradiction.

11. Apply factor lemma and write x + y = ab, x2 − xy + y2 = cd, p = ac, xy + p = bd. As p is
prime, we have two cases.
If a = p and c = 1, then x2 − xy + y2 = d and d ≥ xy by AM–GM. Then p ≥ (b− 1)xy, and
x + y ≥ b(b − 1)xy, which is impossible if b > 1 for size reasons. Thus b = 1, so p = x + y,
and p = (x− y)2, which is a contradiction.
Thus a = 1 and c = p. From (x + y)2 − 3xy = x2 − xy + y2, we get b2 − 3bd = p(d − 3),
and b divides the LHS, so it divides the RHS. If b | p, then from xy + p = bd we get p | xy,
contradiction. Thus b | d− 3. We have three cases. If d < 3, then b = 2, which leads to no
solutions. If d > 3, then d− 3 ≥ b and d > b = x+ y. But then

d =
xy + p

x+ y
≤ xy + pd

x+ y
=

x2 + y2

x+ y
≤ x+ y = b,

contradiction. The remaining case is d = 3, whence (x+ y)2 − 3xy = x2 − xy + y2 becomes
b2 − 9b + 3p = 3p, and b = 9. Given that (x, y) = 1 and x + y = b, we can just check all
possible x, y.


