The factor lemma

CJ Quines April 12, 2025

Warmup

- 1. Let a, b, c, d, and p be positive integers.
 - a) Prove that if $a \mid c, b \mid d$, and p = ab, then $p \mid cd$.
 - b) Prove that if $p \mid cd$, then there exists a and b such that $a \mid c, b \mid d$, and p = ab.
- 2. (Baltic 1996/6 $\ \mathbb{C}$) Let a, b, c, d be positive integers such that ab = cd. Prove that a + b + c + d is not prime.
- 3. (Euclid's formula) Let a, b, c be positive integers such that $a^2 + b^2 = c^2$, gcd(a, b) = 1, and a is odd. Prove that there exists integers u and v such that gcd(u, v) = 1, $a = u^2 v^2$, b = 2uv, and $c = u^2 + v^2$.

The factor lemma

From here, we use the (standard) notation (a, b) = gcd(a, b).

Lemma (Factor lemma)

Let a, b, c, d be positive integers such that ab = cd. Then there exists positive integers p, q, r, s such that

$$a = pq, \quad b = rs, \quad c = pr, \quad d = qs,$$

and (q, r) = 1.

Proof 1. Choose positive integers q and r such that $\frac{a}{c} = \frac{d}{b} = \frac{q}{r}$ and (q, r) = 1. Because $\frac{a}{c}$ in lowest terms is $\frac{q}{r}$, there's some positive integer p such that a = pq and c = pr. Similarly, there's some positive integer s such that d = qs and b = rs.

Proof 2. As $a \mid cd$, there are positive integers p and q such that $p \mid c, q \mid d$, and a = pq. As $p \mid c$, there's a positive integer r such that c = pr; similarly there's a positive integer s such that d = qs. As ab = cd, we can solve for b = rs.

Proof 3. We claim that
$$a = \frac{(a, c)(a, d)}{(a, b, c, d)}$$
. Indeed:
 $(a, c)(a, d) = (a^2, ac, ad, cd)$ (distributivity)
 $= (a^2, ac, ad, ab)$ (substitute $ab = cd$)
 $= a(a, b, c, d)$, (distributivity)

as desired. We have similar equalities for b, c, and d. We can then choose:

$$p = (a, c), \quad q = \frac{(a, d)}{(a, b, c, d)}, \quad r = \frac{(b, c)}{(a, b, c, d)}, \quad s = (b, d).$$

Г			
Ļ	-		,

Remarks

- It's also called the factoring lemma ℤ and (Euler's) four number theorem ℤ. Might as well prove it if you use it though.
- If (a, b, c, d) = 1, you also get (p, s) = 1.
- There are some generalizations I've never used, but it's an interesting exercise to prove them:
 - If $a, c \in \mathbb{R}$ and $b, d \in \mathbb{Z}$ such that ab = cd, then there exists $p \in \mathbb{R}$ and $q, r, s \in \mathbb{Z}$ such that a = pq, b = rs, c = pr, d = qs. (Induct on b.)
 - If a_1, \ldots, a_n and b_1, \ldots, b_n are integers such that $\prod a = \prod b$, then there exists integers $t_{i,j}$ such that $a_i = \prod_j t_{i,j}$ and $b_j = \prod_i t_{i,j}$. (Double induct.)

These are both in Erdős and Surányi's Topics in the Theory of Numbers, which is a fun book.

If these words make sense: the factor lemma holds for all UFDs, so it's true not only in Z, but also Z[i], Z[ω], R[X] for any UFD R (and thus R[X₁,...,X_n]).

Examples

1. (Baltic 1996/6 \mathbf{C}) Let a, b, c, d be positive integers such that ab = cd. Prove that a + b + c + d is not prime.

Sketch 1: Write $d = \frac{ab}{c}$. Then

$$a + b + c + d = \frac{ac + bc + c^2 + ab}{c} = \frac{(a + c)(b + c)}{c},$$

which can't be prime.

Sketch 2: Apply factor lemma and choose

$$a = pq$$
, $b = rs$, $c = pr$, $d = qs$.

Then a + b + c + d = (p + s)(q + r), which can't be prime.

2. (Euclid's formula) Let a, b, c be positive integers such that $a^2 + b^2 = c^2$, (a, b) = 1, and a is odd. Prove that there exists integers u and v such that (u, v) = 1, $a = u^2 - v^2$, b = 2uv, and $c = u^2 + v^2$.

Sketch: From $b^2 = (c - a)(c + a)$, apply factor lemma and choose

$$b = pq = rs$$
, $c - a = pr$, $c + a = qs$.

From pq = rs, apply factor lemma again and choose

$$p = wx$$
, $q = yz$, $r = wy$, $s = xz$.

Then

$$a = \frac{qs - pr}{2} = \frac{xyz^2 - w^2xy}{2} = \frac{xy}{2}(z^2 - w^2)$$

Because a is odd, considering modulo 4 shows that 2 | xy. We also get that xy | 2a. Combined with xy | b and (a, b) = 1, we get that xy = 2. Thus $a = z^2 - w^2$, b = 2zw, and $c = z^2 + w^2$.

3. (Korea Final 2016/3 🗹) Prove that $x - \frac{1}{x} + y - \frac{1}{y} = 4$ has no solutions over the rationals.

Sketch: Write $x = \frac{a}{b}, y = \frac{c}{d}$ in lowest terms. The given equation is

$$a^2cb - b^2cd + abc^2 - abd^2 = 4abcd.$$

Because a divides the RHS, it must divide the LHS, and thus $a \mid b^2 cd$. But (a, b) = 1, so $a \mid cd$. Similarly, $b \mid cd$, $c \mid ab$, $d \mid ab$. Because (a, b) = (c, d) = 1, we get $ab \mid cd$ and $cd \mid ab$, so $ab = \pm cd$; for simplicity we consider only the positive case. Apply factor lemma and choose

$$a = pq$$
, $b = rs$, $c = pr$, $d = qs$, $(q, r) = 1$.

The given equation becomes

$$(p^2 - s^2)(q^2 + r^2) = 4pqrs$$

The RHS is 0 modulo 4. Because (q, r) = 1, $q^2 + r^2 \not\equiv 0 \pmod{4}$. Thus $p^2 - s^2 \equiv 0 \pmod{4}$, so $p \equiv s \pmod{2}$. So in fact $p^2 - s^2 \equiv 0 \pmod{8}$, and the RHS is also 0 modulo 8, so $2 \mid qr$. WLOG, q is even and r is odd. Via similar arguments with a, b, c, d, we get $4qr \mid p^2 - s^2$ and $ps \mid q^2 + r^2$, and these are in fact equalities. Now

$$qr = \frac{p^2 - s^2}{4} = \left(\frac{p - s}{2}\right) \left(\frac{p + s}{2}\right),$$

so setting $u = \frac{p-s}{2}$ and $v = \frac{p+s}{2}$, apply factor lemma on qr = uv and set

$$u = k\ell$$
, $v = mn$, $q = km$, $r = \ell n$, $(\ell, m) = 1$.

Then

$$ps = q^{2} + r^{2}$$
$$(k\ell + mn)(mn - k\ell) = k^{2}m^{2} + \ell^{2}n^{2}$$
$$(m^{2} - \ell^{2})n^{2} = k^{2}(m^{2} + \ell^{2})$$

and because $(\ell, m) = 1$, we get $(m^2 - \ell^2, m^2 + \ell^2) = 1$, thus $k^2 = m^2 - \ell^2$ and $n^2 = m^2 + \ell^2$. We then get $n^4 - k^4 = (2\ell m)^2$, which has no solutions by Fermat's right triangle theorem.

Problems

These are mostly direct applications.

- 1. (ELMO 2009/1 $\ c$) Let a, b, c be positive integers such that $a^2 bc$ is a square. Prove that 2a + b + c is not prime. Hint: 7
- 2. (Russia 2015/10/5 Z) A square grid can be partitioned into *n* congruent tiles, each of size *k*. Prove that it is possible to partition it into *k* congruent tiles, each of size *n*. Hint: 4
- 3. (Moldova TST 2004/1 🗹) Suppose that a natural number n can be written as a sum of two squares of positive naturals in two different ways, in equations $n = a^2 + b^2 = c^2 + d^2$. Show that the number n is composite. Hint: 2
- 4. (\mathbf{C}) Positive integers a, b, c, d satisfy ab = cd and $a + b + c + d = (a b)^2$. Prove that 4c + 1 is a perfect square. Hints: 5 11
- 5. (IMO 2001/6 $\ \mathbb{Z}$) Let a > b > c > d be positive integers and suppose that

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that ab + cd is not prime. Hints: 12 3

Other problems

These are less direct applications. Not necessarily harder than the last section.

6. (USA TSTST 2018/4(a) \mathbf{Z}) For an integer n > 0, denote by $\mathcal{F}(n)$ the set of integers m > 0for which the polynomial $p(x) = x^2 + mx + n$ has an integer root. Let S denote the set of integers n > 0 for which $\mathcal{F}(n)$ contains two consecutive integers. Show that S is infinite but

$$\sum_{n \in S} \frac{1}{n} \le 1$$

Hints: 18 10

Remark: Part (b) is: prove that there are infinitely many positive integers n such that $\mathcal{F}(n)$ contains three consecutive integers. But it's almost a different problem.

- 7. (USA TST 2021/1 **Z**) Determine all integers $s \ge 4$ for which there exist positive integers a, b, c, d such that s = a + b + c + d and s divides abc + abd + acd + bcd. Hints: 16 9
- 8. (IMO 1984/6 $\ \mathbb{Z}$) Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove that if $a + d = 2^k$ and $b + c = 2^m$ for some integers k and m, then a = 1. Hints: 17 14
- 9. (China TST 2006/7/3– Z) Find the largest positive integer M such that there exists integers a, b, c, d satisfying ad = bc and $M \le a < b \le c < d \le M + 49$. Hints: 19 1
- 10. (ISL 2018/N5 \mathbf{C}) Four positive integers x, y, z and t satisfy the relations

$$xy - zt = x + y = z + t.$$

Is it possible that both xy and zt are perfect squares? Hints: 21 8 15

11. (RMM 2023/1 2) Determine all prime numbers p and all positive integers x and y satisfying $x^3 + y^3 = p(xy + p)$. Hints: 6 20 13

Hints

- 1. The key claim is M works iff there's m, n such that $M \leq mn$ and $(m+1)(n+1) \leq M + 49$.
- 2. Factor lemma, then solve for a, b in terms of p, q, r, s.
- 3. Apply the factor lemma to get p, q, r, s. Factor 3(ab + cd), and conclude.
- 4. Consider the area of the square.
- 5. Factor lemma, then set m = p + s, n = q + r. Take square roots.
- 6. Factor lemma to get a, b, c, d, such that $x + y = ab, x^2 xy + y^2 = cd, p = ac, xy + p = bd$. There's two cases. Show a = p and c = 1 gives a contradiction, for size reasons.
- 7. Factor $a^2 bc = n^2$.
- 8. Solve for x, y, a, and substitute into $xy = a^2$. Factor this as $(pqrs)^2 = (something)(something)$.
- 9. If s is prime, show that $ab \equiv cd \pmod{p}$. Do something similar to the first solution of Baltic 1996/6.
- 10. Show the sum is at most $\sum_{p,q>1} \frac{1}{p(p-1)q(q-1)}.$
- 11. Find a quadratic equation that has m/n as a rational root.
- 12. Manipulate to get (a b)(something) = (c + d)(something).
- 13. Show d < 3 and d > 3 leads to no solutions, for size reasons. Conclude.
- 14. Do casework on each of the factors modulo 4.
- 15. Use size arguments on p, q, r, s and conclude.
- 16. If s is composite, pick a, b, c, d equal to pq, rs, pr, qs, then factor.
- 17. Factor lemma, then factor a + b + c + d and a b c + d.
- 18. Use Vieta's to get an ab = cd which you can factor lemma on.
- 19. Suppose M works. Use factor lemma to rewrite a and d, then relate to the inequalities.
- 20. When a = 1 and c = p, use $(x + y)^2 3xy = x^2 xy + y^2$. Show $b \mid p$ leads to a contradiction, therefore $b \mid d 3$.
- 21. Let $xy = a^2$ and $zt = b^2$. Apply factor lemma on (a b)(a + b) = (z x)(z y).

Sketches

- 1. We have $a^2 bc = n^2$ or (a-n)(a+n) = bc. Apply Baltic 1996/6 to get (a-n) + (a+n) + b + c is not prime.
- 2. The area of the square is $s^2 = nk$. Apply factor lemma to choose s = ab = cd, n = ac, k = bd. Tile the square with $a \times c$ rectangles.
- 3. WLOG a > c, then (a c)(a + c) = (d b)(d + b). Apply factor lemma to choose a c = pq, a + c = rs, d b = pr, d + b = qs. Then $a = \frac{pq + rs}{2}$, $b = \frac{qs pr}{2}$, and $4n = (p^2 + s^2)(q^2 + r^2)$. If n was prime, then WLOG $n \mid q^2 + r^2$, and $p^2 + s^2$ is 2 or 4; both cases are impossible.
- 4. Apply factor lemma to choose a = pq, b = rs, d = pr, c = qs. Set m = p + s, n = q + r. The given equation becomes $mn = (qm - sn)^2$. Write $m = (m, n)m'^2$, $n = (m, n)n'^2$. Take square roots to get $\pm m'n' = qm'^2 - sn'^2$. Then $x = \frac{m'}{n'}$ is a rational root of the quadratic $qx^2 \mp x - s = 0$. Thus its discriminant $(\mp 1)^2 - 4q(-s) = 4c + 1$ is a perfect square.
- 5. Rearrange to get

$$ac + bd = (b + d)^{2} - (a - c)^{2}$$
$$a^{2} - b^{2} - bd + ad = d^{2} - c^{2} + ac + ad$$
$$(a - b)(a + b + d) = (d + c)(d - c + a).$$

Apply factor lemma to choose a - b = pq, a + b + d = rs, d + c = pr, d - c + a = qs. Add everything to get 3(a + d) = pq + rs + pr + qs. Solve for a, b, c, d:

$$3a = 2pq + 2rs - pr - qs, 3b = -pq + 2rs - pr - qs, 3c = pq + rs + pr - 2qs, 3d = -pq - rs + 2pr + 2qs.$$

Do more bashing to get

$$3(ab+cd) = -p^2q^2 + r^2s^2 + p^2r^2 - q^2s^2 + pq^2s - pr^2s$$
$$= (r^2 - q^2)(p^2 + s^2 - ps).$$

6. Say $x^2 + mx + n = (x+a)(x+b)$ and $x^2 + (m+1)x + n = (x+c)(x+d)$. Then n = ab = cd, and by factor lemma choose a = pq, b = rs, c = pr, d = qs. Also, m+1 = a+b+1 = c+d, so (p-s)(q-r) = 1. Both factors here must be 1, so n = p(p-1)q(q-1). Then

$$\sum_{n \in S} \frac{1}{n} \le \sum_{p, q > 1} \frac{1}{p(p-1)q(q-1)} = \sum_{p > 1} \left(\frac{1}{p-1} - \frac{1}{p}\right) \left(\sum_{q > 1} \frac{1}{q-1} - \frac{1}{q}\right) = 1$$

by telescoping.

7. It's all composite s. If s is composite, write s = mn. Set (p, q, r, s) = (1, 1, m - 1, n - 1) and a = pq, b = rs, c = pr, d = qs. This works because s = a + b + c + d = (p + s)(q + r) = mn, and $\sum_{cyc} abc = ab(c + d) + cd(a + b) = pqrs(a + b + c + d)$ is divisible by s = mn = pqrs. If s is prime, then $a + b + c + d \equiv 0 \pmod{p}$, and $p \mid ab(c + d) + cd(a + b)$. And RHS here is ab(-a - b) + cd(a + b) = (a + b)(cd - ab), so $ab \equiv cd \pmod{p}$. Again using a similar trick to Baltic 1996/6, write $d \equiv \frac{ab}{c} \pmod{p}$ and get $\frac{(a+c)(a+d)}{c} \equiv 0 \pmod{p}$, contradiction. 8. By factor lemma choose a = pq, d = rs, b = pr, c = qs; then p < s, q < r and these are all odd. Also,

$$2^{m}(2^{k-m}+1) = a+b+c+d = (s+p)(r+q),$$

$$2^{m}(2^{k-m}-1) = a-b-c+d = (s-p)(r-q).$$

Now $s \pm p$ and $r \pm q$ are even, so we have four cases modulo 4:

- If 4 | s + p and 4 | r + q, then $4 \nmid s p$ and $4 \nmid r q$, so m = 2, which is impossible for size reasons.
- Similarly, we can't have $4 \mid s p$ and $4 \mid r q$.
- If $4 \nmid s + p$ and $4 \nmid r q$, then $2^{m-1} \mid s p$ and $2^{m-1} \mid r + q$. Thus $2(s-p) \ge 2^m = pr + qs$, so q = 1; similarly $2(r+1) \ge 2^m = pr + qs$, so p = 1, and a = pq = 1.
- Similarly, in the remaining case we also get a = 1.
- 9. We claim M works if there's m, n such that $M \leq mn$ and $(m+1)(n+1) \leq M + 49$.

(⇒) Use factor lemma to choose a = pq, d = rs, b = pr, c = qs. Then a < b means q < r, and b < d means p < s. Then $M \le a \le pq \le (s-1)(r-1)$, and we can take m = s - 1 and n = r - 1.

(⇐) WLOG $m \le n$, then take (p, q, r, s) = (m, n, n+1, m+1) to get a, b, c, d.

By the claim, $m + n \leq 48$, and $M \leq mn \leq 24^2$, and indeed 24^2 works if we take m = n = 24.

10. No. FTSOC $xy = a^2$ and $zt = b^2$, and WLOG z is largest. Then (a - b)(a + b) = xy - z(x + y - z) = (z - x)(z - y). Apply factor lemma to get z - x = pq, z - y = rs, a - b = pr, a + b = qs. Note that $x + y = a^2 - b^2 = pqrs$, so we can solve to get

$$2x = -pq + rs + pqrs$$
, $2y = pq - rs + pqrs$, $2a = pr + qs$.

Substitute into $(2x)(2y) = (2a)^2$ to get $(pqrs)^2 = (p^2 + s^2)(q^2 + r^2)$. Now we do size arguments: by AM–GM the minimum is 1, so WLOG p = 1, and then we get $q^2r^2 \le 2(q^2 + r^2)$, so s = 1and q = r = 2, contradiction.

11. Apply factor lemma and write x + y = ab, $x^2 - xy + y^2 = cd$, p = ac, xy + p = bd. As p is prime, we have two cases.

If a = p and c = 1, then $x^2 - xy + y^2 = d$ and $d \ge xy$ by AM–GM. Then $p \ge (b-1)xy$, and $x + y \ge b(b-1)xy$, which is impossible if b > 1 for size reasons. Thus b = 1, so p = x + y, and $p = (x - y)^2$, which is a contradiction.

Thus a = 1 and c = p. From $(x + y)^2 - 3xy = x^2 - xy + y^2$, we get $b^2 - 3bd = p(d - 3)$, and b divides the LHS, so it divides the RHS. If $b \mid p$, then from xy + p = bd we get $p \mid xy$, contradiction. Thus $b \mid d - 3$. We have three cases. If d < 3, then b = 2, which leads to no solutions. If d > 3, then $d - 3 \ge b$ and d > b = x + y. But then

$$d = \frac{xy + p}{x + y} \le \frac{xy + pd}{x + y} = \frac{x^2 + y^2}{x + y} \le x + y = b,$$

contradiction. The remaining case is d = 3, whence $(x + y)^2 - 3xy = x^2 - xy + y^2$ becomes $b^2 - 9b + 3p = 3p$, and b = 9. Given that (x, y) = 1 and x + y = b, we can just check all possible x, y.