Lifting the exponent

Carl Joshua Quines
July 20, 2019

Valuation

Define $\nu_p(n)$ for positive integers n as

$$\nu_p(n) = k \iff p^k \mid n, p^{k+1} \nmid n.$$

This is known as the p-adic valuation of n. Note that this is ν_p with the Greek letter ν (spelled nu, pronounced “new”).

Some properties that you should convince yourself are true:

- $\nu_p(ab) = \nu_p(a) + \nu_p(b)$.
- Similarly $\nu_p \left(\frac{a}{b} \right) = \nu_p(a) - \nu_p(b)$. We can use this to extend the definition of ν_p to be a function from $\mathbb{Q} \setminus 0 \to \mathbb{Z}$.

What should $\nu_p(0)$ be? To satisfy the product rule, we can pick $\nu_p(0) = \infty$.

- $\nu_p(a + b) \geq \min \{\nu_p(a), \nu_p(b)\}$, equality holds if $\nu_p(a) \neq \nu_p(b)$.
- $\nu_p(a - b) \geq e \iff a \equiv b \pmod{p^e}$ from the previous.
- $\nu_p(\gcd(a, b)) = \min \{\nu_p(a), \nu_p(b)\}$.
- $\nu_p(\text{lcm}(a, b)) = \max \{\nu_p(a), \nu_p(b)\}$.
- $a = b \iff \nu_p(a) = \nu_p(b)$ for all p.
- More generally, $a \mid b \iff \nu_p(a) \leq \nu_p(b)$ for all p.

Examples

1. Prove that $\gcd(a, b, c) = \frac{abc \cdot \text{lcm}(a, b, c)}{\text{lcm}(a, b) \text{lcm}(b, c) \text{lcm}(c, a)}$.

 Sketch: Pick a prime p, idea is to show ν_p of LHS and RHS are the same. Let $x = \nu_p(a)$, $y = \nu_p(b)$, and $z = \nu_p(c)$. In the LHS you have $\min \{x, y, z\}$, on the RHS you have $x + y + z + \max \{x, y, z\} - \max \{x, y\} - \max \{y, z\} - \max \{z, x\}$. But these are equal.

2. Suppose $a \mid b^2 \mid a^3 \mid b^4 \mid a^5 \mid \cdots$. Prove that $a = b$.

 Sketch: This is an easy problem, but it’s a bit hard to write up. Using ν_p makes it easier. We have

 $$a^{2n-1} \mid b^{2n} \implies (2n-1)\nu_p(a) \leq 2n\nu_p(b) \implies \nu_p(a) \leq \frac{2n}{2n-1}\nu_p(b).$$

 Taking the limit as $n \to \infty$ means $\nu_p(a) \leq \nu_p(b)$; similarly we can prove $\nu_p(b) \leq \nu_p(a)$. This shows $\nu_p(a) = \nu_p(b)$.

\[1\] This is sometimes written as v_p with the English letter v. I don’t think this is standard, as I see more sources use ν_p. I don’t even know why ν is the letter chosen for this, other than its superficial similarity to the letter v.

3. Let \(p \) prime, \(n \in \mathbb{N} \). Suppose \(p \mid 2^n - 1 \). Show that \(p \mid 2^{p-1} - 1 \). (We say \(p \mid n \iff p \mid n, p^2 \nmid n \).)

Remark: While this is typically done with the so-called lifting the exponent lemma, many people learn the statement without knowing the proof, which I think is bad, because the proof gives useful intuition. So we’re going to motivate the proof using this problem and the next problem.

Sketch: Let \(m \) be the order of 2 modulo \(p \). That is, the smallest positive integer \(m \) such that \(p \mid 2^m - 1 \). Because \(m \) is the order, we have \(m \mid n \), so \(2^m - 1 \mid 2^n - 1 \), therefore, we get \(p \mid 2^m - 1 \).

Now we use the main idea, and that’s dividing \(2^{p-1} - 1 \) by \(2^m - 1 \). With some algebra,

\[
\frac{2^{p-1} - 1}{2^m - 1} = 1 + 2^m + 2^{2m} + \cdots + 2^{p-1-m}.
\]

Modulo \(p \), this is \(\frac{p-1}{m} \) (because \(p \mid 2^m - 1 \)). So this is not equal to 0, so \(p^2 \nmid 2^{p-1} - 1 \). But by FLT, \(p \mid 2^{p-1} - 1 \), the conclusion follows.

4. Let \(n \in \mathbb{N}^0 \). Find \(\nu_3 (2^{3^n} + 1) \).

Sketch: This is induction. Find the answer when \(n = 0 \). Then observe that

\[
\frac{2^{3^n+1} + 1}{2^{3^n} + 1} = 2^{3^n} - 2^{3^n} + 1 \equiv 1 - (-1) + 1 \equiv 3 \pmod{9},
\]

then it’s divisible by 3 but not 9, so going \(n \to n + 1 \) increases \(\nu_3 \) by 1.

Lifting the exponent

We can now state and prove the lifting the exponent lemma. It states that if \(p \) is an odd prime, \(p \nmid a, p \nmid b \), and \(p \mid a - b \), then

\[
\nu_p(a^n - b^n) = \nu_p(a - b) + \nu_p(n)
\]

for all positive integers \(n \). The condition \(p \mid a - b \) is very important, yet easy to forget. Always remember to check this condition. In particular, you must have \(\nu_p(a - b) > 0 \).

The proof is by induction on \(n \). The main idea here is the inductive step. The idea is that we want to take out the powers of \(p \) from \(n \). For example, if we take \(n = p^\alpha \), we can rewrite this as

\[
\nu_p\left((a^{p^{\alpha-1}})^p - (b^{p^{\alpha-1}})^p\right) = \nu_p\left(a^{p^{\alpha-1}} - b^{p^{\alpha-1}}\right) + 1.
\]

But to prove this, we only have to show that it’s true for \(n = p \). Similarly, if we have \(n = p^\alpha \beta \), where \(\gcd(p, \beta) = 1 \), we can write

\[
\nu_p\left((a^{p^{\alpha}})^\beta - (b^{p^{\alpha}})^\beta\right) = \nu_p\left(a^{p^{\alpha}} - b^{p^{\alpha}}\right),
\]

which means we only have to show the case when \(\nu_p(n) = 0 \). This is already our inductive step! So these two cases, the one where \(\nu_p(n) = 0 \) and \(n = p \), will form the two base cases of our induction.

The case \(\nu_p(n) = 0 \) is easy. Write

\[
\nu_p(a^n - b^n) = \nu_p(a - b) \iff \nu_p\left(\frac{a^p - b^p}{a - b}\right) = 0;
\]
where we get the second equation by transposing \(\nu_p(a - b) \) and applying the quotient rule. We only need to show that
\[
p \nmid a^{p-1} + a^{p-2}b + \cdots + b^{p-1}.
\]
This follows because \(a \equiv b \pmod{p} \), so substitute this to get
\[
a^{p-1} + a^{p-1} + \cdots + a^{p-1} \equiv na^{p-1} \not\equiv 0.
\]
The other base case, \(n = p \), is harder. We need to show that
\[
\nu_p(a^p - b^p) = \nu_p(a - b) + 1 \iff \nu_p\left(\frac{a^p - b^p}{a - b}\right) = 1.
\]
There are two parts here. First, we want to show
\[
p \mid a^{p-1} + a^{p-2}b + \cdots + b^{p-1}.
\]
This follows because \(a \equiv b \pmod{p} \), so using a similar process from the other base case, we get \(pa^{p-1} \equiv 0 \). Second, we want to show that
\[
p^2 \nmid a^{p-1} + a^{p-2}b + \cdots + b^{p-1}.
\]
This second part is an algebra bash. We substitute \(b \equiv pk + a \pmod{p^2} \), then expand with the binomial theorem. It’s not that bad because all of the terms with \(p^2 \) disappear, leaving us with
\[
a^{p-1} + (a^{p-1} + a^{p-2}pk) + (a^{p-1} + 2a^{p-2}pk) + \cdots + (a^{p-1} + (p-1)a^{p-2}pk) = a^{p-1} + (a^{p-2}pk) + (a^{p-1} + 2a^{p-2}pk) + \cdots + (a^{p-1} + (p-1)a^{p-2}pk) = \frac{a^p - b^p}{a - b}.
\]
The \(a^{p-2}pk \) terms have coefficients \(1 + 2 + \cdots + p - 1 \equiv 0 \pmod{p} \), so coupled with the extra \(p \) factor, they all sum to \(0 \pmod{p^2} \). This leaves you with \(pa^{p-1} \not\equiv 0 \pmod{p^2} \).

An alternative formulation follows if \(n \) is odd. Then we can replace \(b \) with \(-b\) to get
\[
\nu_p(a^n + b^n) = \nu_p(a + b) + \nu_p(n).
\]
Note, again, this only applies if \(n \) is odd.

Example: Suppose \(a, b, n, p, k \in \mathbb{N} \) such that \(n > 1 \) is odd, \(p \) is an odd prime, and \(a^n + b^n = p^k \). Prove that \(n \) is a power of \(p \).

Sketch: Check all the conditions before using LTE! We have \(p \) is an odd prime. If \(p \mid a \), then \(p \mid b \), and we can divide both \(a \) and \(b \) by \(p \) until neither is divisible by \(p \), so WLOG \(p \nmid a \) and \(p \nmid b \). Also, \(n \) is odd so we can use the + case of LTE.

Now we check the hard condition. By factorization, since \(a + b \mid a^n + b^n = p^k \), it must follow that either \(a + b = 1 \) (impossible) or \(p \mid a + b \). This gives us all the conditions and now we can use LTE:
\[
k = \nu_p\left(p^k\right) = \nu_p(a^n + b^n) = \nu_p(a + b) + \nu_p(n).
\]
Now suppose \(\ell = p^r(n) \). Then
\[
\nu_p\left(a^\ell + b^\ell\right) = \nu_p(a + b) + \nu_p(n).
\]
So \(p^k \mid a^\ell + b^\ell \mid a^n + b^n = p^k \), so they must all be equal and \(n = \ell \) which is a power of \(p \).
Problems

1. (Folklore) Fix $k \in \mathbb{N}$. Find all n such that $3^k \mid 2^n - 1$.

2. (Iran 2008) Fix $a \in \mathbb{N}$. Suppose $4(a^n + 1)$ is a perfect cube for all $n \in \mathbb{N}$. Prove that $a = 1$.

5. (AIME 2018) Find the smallest n such that 3^n ends with 01 when written in base 143.

Hints

1. $2^{2n} - 1 = 4^n - 1$ and $3 \mid 4 - 1$.

2. Taking $a^2 + 1 \mod 4$, we see it’s never a power of 2.

3. $2^p + 3^p$ is not a square. Find $\nu_5 (2^p + 3^p)$.

5. $11 \mid 3^5 - 1$ so $3^n - 1 = (3^5)^{n/5} - 1$.

References

The classic reference is Amir Hossein Parvardi’s [Lifting the Exponent Lemma] handout, but I don’t think it motivates LTE well enough. The exposition here roughly follows Evan Chen’s [OTIS Excerpts].

Thanks to Konwoo Kim for sending a correction.