
Machine learning

Carl Joshua Quines

July–August 2020

Notes for counselor seminars during PROMYS 2020. Standard disclaimer
that I’m pretty clueless about machine learning, things are probably going
to be badly explained, and even wrong, etc. etc.

One of my perspectives of machine learning is that it’s a toolbox to make predic-
tions on data. Studying machine learning is like studying enumerative combinatorics.
In a combinatorics class, maybe you’d learn about lots of different ways to count
things, and solving a counting problem is a matter of choosing which one best fits the
job. The same goes with machine learning.

Unlike, say, algebra or geometry, machine learning doesn’t have a lot of central,
unifying theories. It’s just a general name for a collection of statistical tricks. This
isn’t a bad thing. It means that it only takes a little background knowledge to start
reading about current research. (Though, the subfield of statistical learning theory is
one important exception.)

I think I have two main goals in this seminar. First, I want to introduce the parts
of machine learning that I think represent what’s most interesting about the field, and
showcase the larger issues of current research. And second, I want to talk about some
of the state-of-the-art in machine learning.

I’ll build up to this through speaking about three things. First is the classification
problem and the approaches that are used to solve it, which I think is interesting and
has some nice mathematical connections. This will lead us to generalization and
some theoretical issues about data, which will touch on some statistical learning theory.
Finally, we’ll talk about neural networks, which have become so widely-used, that
understanding them is often necessary, and sometimes even sufficient, if you want to
read the latest research.

My main references are lecture notes from the Fall 2019 version of 6.036 Introduction
to Machine Learning, The Elements of Statistical Learning, and Foundations of Machine
Learning. If you look around, you can find Fall 2018 notes for 6.036, which are mostly
similar to the Fall 2019 notes; I think they’re good introductory notes. You can
download Elements of Statistical Learning for free W on its website, which gives
a broader discussion of many topics, though it’s quite old. Foundations is about
statistical learning theory, and it’s pretty probability-heavy, if you like that.

One last note. None of the figures here are intended to be really accurate. All the
decision boundaries and regressions are eyeballed, and are intended to just give an
idea of what it should actually look like. But that’s fine, it’s like how geometry figures
don’t have to be to scale, right?

https://web.stanford.edu/~hastie/ElemStatLearn//

Machine learning Carl Joshua Quines

1 Classification (July 19)

Prerequisites: Know what a linear regression is, but not necessarily how to do it,
dealing with matrices, vectors, conditional probability, Bayes’s theorem. Nice, but not
necessary: matrix differentiation, multivariate Gaussians.

A first example

Here’s a machine learning problem. We have some points in the plane. Some are
circles and some are crosses. Here’s a picture:

This is your training data. Now consider the question mark. Do you think it’s more
likely to be a circle or a cross?

Here are two ways to solve this problem. First is linear regression. We’re going
to take our plane and add another dimension, the height, based on whether it’s a circle
or a cross. We’ll make the height of a point 1 if it’s a circle, and −1 if it’s a cross.
Plotting in space, rather than the plane, we get this:

Now apply linear regression on the new training data. This will give us a plane that
tries to match the location of these points.

We can think of a plane as taking x- and y-coordinates, and returning a height, or a
z-coordinate. This plane will now be our model. We’ll say that a point is a circle if its
height is positive, and a cross if its height is negative. According to this model, the
point is a cross.

Second is nearest neighbors. This is arguably a simpler way. We take the point
nearest to the question mark among the training data, and if it’s a circle we say it’s a

2

Machine learning Carl Joshua Quines

circle, and if it’s a cross we say it’s a cross. According to this model, the point is a
circle.

Of course, rather than plugging into the hyperplane formula, or looking at the
nearest neighbors every time, we can look at the decision boundaries. For the
hyperplane, the decision boundary is the line where z = 0. Everything “above” that
line is a circle, and everything “below” that line is a cross. For nearest-neighbors, the
boundaries are polygons that are drawn around the data. Everything that falls within
a circle boundary, we say is a circle; everything that falls within a cross boundary, we
say is a cross:

How do linear regression and nearest neighbors stack up with different kinds of data?
Here’s another example of circles and crosses in the plane, along with the decision
boundaries of linear regression and nearest neighbors:

Which one do you think is more likely to be “true”, whatever that means? What
about in this scenario:

3

Machine learning Carl Joshua Quines

Maybe nearest neighbors is too “sensitive”. Instead of taking just the nearest
neighbor, why don’t we take the 3 nearest neighbors, and then do a majority vote. If
circle is the most common among the 3 nearest neighbors, say it’s a circle. If it’s cross,
say it’s a cross.

In fact, we can generalize beyond 3. Let’s call the general algorithm k-nearest
neighbors. Here’s what the decision boundaries looks like for different k. In reading
order, this is k = 1, then k = 3, then k = 9, and finally, k = 50. In the last one, the
entire plane is classified as a cross, as there are more crosses than circles.

Which of these is the “best”? How does this compare with linear regression? Are
there better ways to find classifiers? How do we choose k? How do we choose between
models, anyway?

Definitions

We’ll return to some of these questions shortly, but now that we have some experience,
we’re ready to define some terms.

Machine learning is about learning algorithms, or “tools” in our toolbox analogy.
Depending on the kind of problem, we’ll throw a different learning algorithm at it.
A learning algorithm takes in data and produces a model or hypothesis. It’s the
model that we use to make predictions or analyze data.

Take note of the types. Generally, data has type (input, output), a model has
type input → output, and a learning algorithm has type data → model. In the first
example earlier, the data is the points and their labels, the model is plugging it into the
plane equation and determining whether it’s above or below z = 0, and the learning
algorithm is linear regression that produces this plane in the first place.

4

Machine learning Carl Joshua Quines

The problem we’ve been looking at so far is called classification: classify these
inputs into a discrete set of outputs. The model in this case is called a classifier.
There are other kinds of problems too, like regression, ranking, clustering, and so on.
For this and the next seminar we’ll focus on classification.

Sometimes the learning algorithm doesn’t just take in the data, but some other
inputs. For example, k-nearest neighbors takes the examples, but it also takes the
input k, for how many neighbors to look at. We call k a hyperparameter: it’s
something that goes into the learning algorithm that isn’t the data itself.

The data is usually called examples. The examples are usually split up into
training data, validation data, and test data. Training data is what’s fed into
the learning algorithm. Validation data is used to pick the hyperparameters. Test
data is used to measure how good the produced model is, using something called a
loss function; an example of a loss function might be squared loss. (It is one thing
to test a model, it is another thing to test a learning algorithm!)

In our previous example, the test data was conveniently given as points in the
plane, but this is rarely the case in real life. Data comes as words, pictures, music.
Our learning algorithms assume all input and output are numbers, or vectors. So we
convert this data into features. If we wanted to write a machine to distinguish plants
from animals, it could taken in features like height, weight, color, and so on. Doing
this is the task of feature extraction, or feature representation.

Finally, the outputs in the data are called labels. So we can think of data as pairs
of features and labels. That was a lot of words. Here’s a diagram:

Linear regression

Let’s go back to our previous questions. For the rest of the hour, we’ll tackle the classi-
fication problem using linear classifiers, or classifiers with linear decision boundaries.
(These sound pretty specific, but we’ll show later how they easily generalize.)

Let’s recall some facts about linear regressions. In the simple case, we’ll have a
d-dimensional input vector x = (x1, x2, . . . , xd)

T , which corresponds to some scalar
output y. The hyperplane that will fit the data will be of the form

f(x) = βTx+ β0,

for some d-dimensional vector β, and some scalar β0. We can simplify this by augment-
ing x to x′ := (1, x1, . . . , xd)T , and augmenting β to β′ := (β0, β1, . . . , βd)T . Our fitting
hyperplane is now f(x′) = β′Tx′, which passes through the origin. Geometrically, this
is projectivization:

5

Machine learning Carl Joshua Quines

We’ll abuse notation by dropping primes, assuming that x is already augmented,
and using d as the new dimension. Suppose we now have n inputs (x1, y1), . . . , (xn, yn).
The linear regression is given by the β that minimizes the sum of the square loss

L(β) =

n∑
i=1

(yi − f(xi))
2 =

n∑
i=1

(
yi − βTxi

)2
.

Let X be the n× d matrix
[
x1 · · · xn

]T
. Note that we have the xi as rows and not

columns. Similarly let Y be the n× 1 matrix
[
y1 · · · yn

]T
. Then the square loss is

L(β) = (Y −Xβ)T (Y −Xβ)

Differentiate with respect to β and set equal to zero to get

∂L

∂β
= −2XT (Y −Xβ) = 0 =⇒ β = (XTX)−1XTY,

assuming XTX is invertible. We’ll talk about how to deal with non-invertability later.
How do we use this for classification? It’s mostly the same setup. Say that we each

of the xs are classified into k different classes. Then y, instead of being a scalar, will
now be a k-dimensional vector y = (y1, y2, . . . , yk)T , where yi = 1 if x is of category i,
and 0 otherwise. Then Y would be an n× k matrix instead. The steps are exactly the
same; in the end, we get β, which is a d× k matrix.

Exercise 1.1. Check that if we replace Y , then the dimensions still work out.

So let’s say we have a new input x that we want to classify. We compute f(x) = βTx,
then take the largest coordinate of f(x) and classify it there.

Exercise 1.2. One possible interpretation of f(x)’s coordinates are probabilities: the
ith coordinate represents our probability that x is in the ith category. Show that the
sum of f(x)’s coordinates is 1, assuming we’ve augmented x. Convince yourself that
sometimes, the coordinates can be negative, or greater than 1.

Exercise 1.3. Given the matrix β, how do you find the decision boundary between the
categories i and j?

6

Machine learning Carl Joshua Quines

Regularization

Non-invertibility is an actual issue. Even the matrix XTX being close to non-invertible
can cause problems due to numerical stability.

To deal with non-invertibility, we add a regularization term to the loss function.
Intuitively, it acts as a penalty for β being too “complicated”, but for now, it simply
fixes the non-invertible problem. The new loss function is now

L(β) =

n∑
i=1

(yi − f(xi))
2 + λ ‖β‖2 .

Here, λ is a hyperparameter. For small values of λ, it’s similar to normal regression.
As λ grows, it pushes β to be smaller. This turns it from linear regression, to an
algorithm we call ridge regression.

Exercise 1.4. Check that the β that minimizes this is (XTX + λI)−1XTY . This is
nice, because for λ > 0, XTX + λI is always invertible.

In practice, matrix inversion is expensive and numerically unstable, so we usually
minimize the loss function using gradient descent. We’ll talk about gradient descent
more when we get to neural networks.

Issues with linear regression

Linear regression is a reasonable approach sometimes. But one big problem with naive
linear regression is masking. If we try to use linear regression on the data below,
which is in three categories, we get a decision boundary that completely masks the
center one:

The problem is that the center coordinate is never large enough for it to be classified
there. As we go from the lower-left to the top-right, f(x)’s center coordinate remains
constant, and it’s masked by the bottom and top coordinates. The figure above shows
some samples of f(x) at different points x.

In some sense, this issue arises because there isn’t much theoretical justification
for using linear regression on a classification problem. When we try to interpret the
coefficients as probabilities, we don’t get anything nice, other than the fact they all
add up to 1.

7

Machine learning Carl Joshua Quines

Other linear classifiers

A more solid approach starts with Bayes’s theorem:

P (y = i | x) =
P (x | y = i)P (y = i)

P (x | y = 1)P (y = 1) + · · ·+ P (x | y = k)P (y = k)
.

In the case that x is discrete, then we can estimate P (x | y = i) by taking the ratio
P (x, y = i)/P (y = i) over the training data. This gives a naive Bayes classifier.
In the case that x is a vector, we’ll model each of the P (x | y = i) as a multivariate
Gaussian:

P (x | y = i) =
1√

(2π)dΣi

exp

(
−1

2
(x− µi)TΣ−1i (x− µi)

)
.

We make the additional assumption that the Σ are equal. Suppose we wanted to find
the decision boundary between P (y = i | x) and P (y = j | x). We’ll take the ratio,
which conveniently cancels the denominator from Bayes’s theorem:

P (y = i | x)

P (y = j | x)
=
P (x | y = i)P (y = i)

P (x | y = j)P (y = j)
=
P (y = i)

P (y = j)
·

exp
(
−1

2(x− µi)TΣ−1(x− µi)
)

exp
(
−1

2(x− µj)TΣ−1(x− µj)
) .

Then we’ll take the logartihm, which conveniently makes it linear:

log
P (y = i | x)

P (y = j | x)
= log

P (y = i)

P (y = j)
− 1

2
(µi + µj)

T Σ−1(µi − µj) + xTΣ−1(µi − µj).

Then P (y = i | x) > P (y = j | x) when this linear function is positive, and the other
direction when it’s negative. So this gives us a linear boundary between two classes.
We then have to estimate P (y = i), µi, and Σ from the data.

This is known as linear discriminant analysis. To the left is what it gives for the
previous failed example for linear regression. To the right is what decision boundaries
it gives on data that’s actually produced by multivariate Gaussians:

Another method, called logistic regression, starts directly by assuming that the
log-ratios have a linear boundary, and then fitting directly from there. Logistic
regression is generally safer than linear discriminant analysis, but both perform much
better than linear regression in practice.

8

Machine learning Carl Joshua Quines

2 Non-linearity (July 25)

Prerequisites: Matrices, vectors, distances from points to planes, dot products. Nice,
but not necessary: the previous seminar.

The perceptron

For the rest of this seminar, I’ll say plane to mean hyperplane. Usually, in d-dimensional
space, this refers to a (d− 1)-dimensional hyperplane. So in two dimensions, this is
just a line; in three dimensions this is a plane. We’ll abuse notation by saying plane
to refer to its normal vector too.

Let’s look at this data of circles and crosses in the plane. The nice thing about this
data is that it’s linearly separable. There’s some plane that divides the data cleanly
into the two classes.

Recall how, in the previous seminar, we got rid of the constant term in the linear
regression by adding a coordinate. The main idea is that we can rewrite a plane like
z = ax + by + c into z = (a, b, c)(x, y, 1)T , which we can interpret as adding a new
dimension, and it’s just 1 in that dimension. This is projectivization. Geometrically,
it moves our points from the plane into space, and it turns our arbitrary plane into a
plane passsing through the origin, as in the right figure above.

Planes passing through the origin as nice, because we can write them in the form
βTx = 0, where x is the vector of coordinates. Assuming our data has two classes,
and is linearly separable, we’re now going to introduce an algorithm, the perceptron,
that finds such a separating plane.

Notation again. Our training data is (x1, y1), . . . , (xn, yn), in d-dimensional space,
assuming we’ve already projectivized. We assume there are only two classes, and that
each yi is either −1 or +1.

We’re looking for the d-dimensional plane that separates the data. Let’s say that
we found such a plane, its normal vector is β, and β points towards the +1 part of the
data. Then we get βTx > 0 for the x that’s in the +1 side of space, βTx < 0 for the x
that’s in the −1 side of space. In either case, if (x, y) is a correctly classified example,
then yβTx > 0. Keep this in mind.

The perceptron algorithm starts by setting β = 0. Then for i = 1, 2, . . . , n, we check
if yiβ

Txi ≤ 0. In other words, we check if (xi, yi) is incorrectly classified. If it is,
then we add yixi to β. We keep going through all points until everything’s correctly
classified.

9

Machine learning Carl Joshua Quines

Exercise 2.1. Why does adding yixi make the classifier “closer” to being correct? If
yiβ

Txi ≤ 0, what can we say about yi (β + yixi)
T xi?

Exercise 2.2. Let’s say we have two dimensional training data D, where the inputs are
x = (x1, x2). Further, let’s say the x1-coordinate ranges from −1000 to 1000, while
the x2 coordinate ranges from −1 to 1. Compare this to the D′, which is the same
data, except x1 is normalized to be within −1 to 1. How do you think the perceptron
algorithm will differ in these two cases?

Perceptron convergence

The neat thing about the perceptron is that if a separating plane exists, it always finds
it. The proof’s actually pretty nice. The main idea is to take the “best” separating
plane β∗, and show that the angle between β and β∗ decreases fast enough.

Recall that the signed distance from a point x to a plane β is βTx/ ‖β‖. This signed
distance is positive if x is in the side pointed to by β and negative otherwise. So for
an example (x, y) that’s correctly classified, the expression

y · β
Tx

‖β‖
is always positive, and it’ll be negative otherwise. We call this the margin of the
point. The margin of training data is the minimum margin over all points. With fixed
training data, we abuse terminology and say the margin of the separator too. So in
this picture, one separating plane has a much smaller margin than the other. It should
be “intuitive”, in some sense, that a larger margin is better.

Now for the convergence theorem. We assume that the data has a separating plane;
further assume that the separating plane β∗ has the margin M . And suppose that R is
the maximum of ‖x‖ over all the data. The key result is that the perceptron algorithm
will make at most (R/M)2 updates, and after that, it’s going to be a separating plane.

Alright, the proof. Let βk be the separator after the kth update of the perceptron.
We said we’d look at the angle between the two planes:

cos (βk, β
∗) =

(
βk · β∗

‖β∗‖

)(
1

‖βk‖

)
.

If the kth update happened on the point (x, y), then we can bound the first factor
using βk−1:

βk · β∗

‖β∗‖
=

(βk−1 + yx) · β∗

‖β∗‖
≥ βk−1 · β∗

‖β∗‖
+M,

10

Machine learning Carl Joshua Quines

after distributing the dot product. Repeatedly do this until you get to β0 = 0; this
shows the first factor is at least kM .

For the second factor, since (x, y) is classified incorrectly, then y(βTk−1x) ≤ 0, meaning

‖βk‖2 = ‖βk−1 + yx‖2

= ‖βk−1‖2 + 2y
(
βTk−1x

)
+ ‖x‖2

≤ ‖βk−1‖2 + 2 · 0 +R2.

Again, repeating until we hit β0, we get the bound ‖βk‖ ≤ R
√
k. Hence

cos (βk, β
∗) =

(
βk · β∗

‖β∗‖

)(
1

‖βk‖

)
≥ kM · 1

R
√
k

=
M

R

√
k.

As the maximum value of cos is 1, we get k ≤ (R/M)2. So any k larger than this can’t
have had an update preceding it, which gives the bound.

Exercise 2.3. How do we interpret this bound? How is the bound (R/M)2 affected by
scaling all the input coordinates of the training data? What about if we only scaled
one coordinate?

Basis transformations

While linear classifiers may seem pretty specific, there’s a neat way to generalize them
to make non-linear classifiers, using (non-linear) basis transformations. Consider the
data on the left:

It’s not linearly separable. But if we take the input (x, y), and lift it by its distance
to the origin, so that it becomes (x, y, x2 + y2), all of a sudden it is! The plane that
separates it is z = k, for some k. In the original space, this corresponds to x2 + y2 = k.

Of course, this feels like a cheat; we hand-crafted this transformation ourselves, didn’t
we? Is there a general, or domain-independent way to do this? One systematic way
is to use the kth-order polynomial basis, which adds to the vectors all monomials of
degree at most k. So the second-order transformation ϕ, for a two-dimensional point,
would be

ϕ : (x, y) 7→ (1, x, y, x2, y2, xy).

Here’s the XOR dataset, which is a notorious dataset in twentieth-century machine
learning. With the second-order polynomial transformation, the perceptron finds this
separator after four updates. Note that it’s a hyperbola—why?

11

Machine learning Carl Joshua Quines

The kernel trick

But even the polynomial basis is pretty constrained. There are two main issues with
it. First, it’s costly to compute the kth-order transform for any reasonable k for every
example in the training data. And second, it’s rather limiting. There’s no easy way to
generalize this to other non-linear transformations we might want to try.

We can solve both of these issues through what’s called the kernel trick. We’ll
apply the kernel trick to the perceptron, and it’ll involve two parts:

• taking the dual perceptron, which is really applying the concept of duality from
linear programming,

• then rewriting dot products using kernel functions, which will implicitly map
data into higher-dimensional space.

We’ll start with the dual perceptron. Recall that every time we make a mistake
with the point (x, y), we update β to be β + yx. Now consider what this looks like in
total. Let’s say our training set is (x1, y1), . . . , (xn, yn), and that we made a mistake
on the ith point αi times. Then

β = α1y1x1 + · · ·+ αnynxn.

Now, how do we classify a new point, x? We take βTx and look at the sign. But this
is just

βTx = α1y1(x1 · x) + · · ·+ αnyn(xn · x).

We’ve removed dependence on β now, and written the problem entirely in terms of
the vector α = (a1, . . . , αn). This gives us the dual perceptron: rather than storing
β, we store α. To run the dual perceptron algorithm, we start with α = 0, compute
the above sum, and if the sign is wrong, we change the corresponding coordinate of
α.

Exercise 2.4. If you’re familiar with duality in linear programming, how is this related
to that?

And now, we’re going to rewrite the dot products xi · x with kernel functions,
K(xi, x), which take two d-dimensional vectors and gives a scalar. This gives us

α1y1K(x1, x) + · · ·+ αnynK(xn, x).

12

Machine learning Carl Joshua Quines

The idea is that a kernel function represents the inner product in a higher-dimensional
space. For example, consider the kernel function

K
(
(x, y), (x′, y′)

)
=
(
1 + (x, y) · (x′, y′)

)2
.

This expands to
1 + 2xx′ + 2yy′ + x2x′2 + y2y′2 + 2xyx′y′.

Now consider the transformation ϕ : (x, y) 7→ (1, x
√

2, y
√

2, x2, y2). Then

K
(
(x, y), (x′, y′)

)
= ϕ(x, y) · ϕ(x′, y′),

where the outer dot product is in the higher-dimensional space. So this generalizes
our polynomial transformation into looking for kernel functions instead.

Kernel functions represent not only polynomial transformations, but also things like
− exp (k ‖x− x′‖)2, a radial basis. Later, we’ll see that neural networks can be thought
of as using the kernel function tanh (k1x · x′ + k2). Such kernel functions are usually
required to be positive definite symmetric, so that they map to the inner product of
some higher-dimensional space. (Something something linear algebra.)

Support vector machines

Recall that the perceptron is guaranteed to find a separating plane, assuming that
the data is linearly separable. There are two issues here. First, there is no guarantee
on how good this separating plane is. It could very well be a plane with a really low
margin. And second, there are no guarantees at all if the data isn’t linearly separable;
even just one outlier can throw off the whole algorithm.

Both of these issues are covered by support vector machines. In the separable
case, SVMs find the separator with the maximum margin, and it generalizes to the
non-separable case as well.

Recall that the margin of a point (x, y), with respect to the plane β, is yβTx/ ‖β‖.
This represents the distance of the point to the plane. We can treat finding the
maximum margin separator as an optimization problem now:

maximize M if yi ·
βTxi
‖β‖

≥M for i = 1, 2, . . . , n.

Note that if β satisfies the inequality, then any positive multiple of β satisfies it too.
We can thus fix ‖β‖ = 1/M , which makes the problem

minimize ‖β‖ if yiβ
Txi ≥ 1 for i = 1, 2, . . . , n.

Solving this problem would find the maximum margin separator. To deal with the
outliers, we’re going to add slack variables. Unfortunately, it is standard notation
to write these as ξ1, . . . , ξn:

minimize ‖β‖ if yiβ
Txi ≥ 1− ξi for i = 1, 2, . . . , n.

These measure how “badly classified” each individual point is: ξi is 0 if it’s correctly
classified, and if it’s positive, it’s proportional to the distance “across the wrong side”
of the classifier:

13

Machine learning Carl Joshua Quines

By allowing some fixed amount of slack, usually with the constraint ξ1 + · · ·+ ξn ≤
some fixed constant, we can allow some amount of misclassification.

The SVM algorithm is independent of the technique used to solve this optimization
problem. Traditionally, this is solved by taking the dual problem, then applying
quadratic programming. Like the perceptron, the dual problem is only written in
terms of dot products, so you can use the kernel trick. I don’t think the algebra’s very
instructive so I won’t include it here.

More recently, this optimization is solved using techniques like gradient descent.
We won’t go through what gradient descent is now, but it’s a useful technique to solve
minimization problems that we’ll encounter again when we talk about neural networks.

14

Machine learning Carl Joshua Quines

3 Generalization (August 1)

Prerequisites: Bayes’s theorem, the first seminar. Nice, but not necessary: the second
seminar.

Occam’s razor

So far, we’ve discussed several methods to solve the classification problem, from k-
nearest neighbors, to linear regression, to linear discriminant analysis, to the perceptron,
to support vector machines. We can keep going and talk about more classifiers, which
we’ll do next time when we talk about neural networks. But I think it’s also useful to
talk about some more bigger picture things.

One perspective of machine learning is that the key problem is the problem of
induction, or the problem of generalization. How well does a learning algorithm
perform on new data, given the data it already knows?

Occam’s razor says that, when presented with several hypotheses that fit the data,
the simplest explanation is most likely correct. To see how it applies to machine
learning, consider how the choice of k affects the decision boundaries for k-nearest
neighbors in this data, from k = 1, to 3, to 50.

Or consider something like polynomial interpolation. Here’s some data, where we
find the best-fitting polynomial of degree d, or the one that minimizes the sum of
squared errors. See how the choice of d, from 1 to 2 to 6, affects the model:

Certainly you wouldn’t want your hypothesis to be too complex. That’s overfitting:
the issue you get when your hypothesis fits too closely to the existing data, so much
that it wouldn’t perform well on future data. And this fits in with Occam’s razor,
which tells us that we should pick simpler hypotheses, rather than more complex ones.

But there’s another side to Occam’s razor. You don’t want your model to be
too simple either, because then you risk not fitting the data well at all. That’s
underfitting: when your model isn’t complex enough to capture the structure of the
existing data.

The balance between underfitting and overfitting go hand-in-hand. Today’s talk is
about the various ways this idea appears in machine learning:

15

Machine learning Carl Joshua Quines

• We’ll talk about how hyperparameters help control the complexity of a model.

• We’ll talk about statistical learning theory, and how we use tools from probability
to formalize this.

• We’ll talk about the bias–variance tradeoff, some terminology to help describe
this issue.

• We’ll talk about cross-validation, which is how overfitting is dealt with in practice.

• Finally, if we have enough time, we’ll talk about model selection, and how Bayes’s
theorem is one formalization of Occam’s razor.

Hyperparameters

As discussed in the first talk, a hyperparameter is an input to our learning algorithm
that isn’t the data itself, like k in k-nearest neighbors, or λ in ridge regression. Both
of these hyperparameters also control the “complexity” of the model. We’ve already
seen how k affects k-nearest neighbors. Larger values of k limit the possible decision
boundaries, but it also “smoothens” the model, making it simpler.

In fact, the λ we saw in ridge regression serves a similar purpose: larger values limit
the possibilities for the model. To illustrate this, we’ll do a polynomial regression. Here
our input and output are just real numbers, which we’ll write as (x1, y1), . . . , (xn, yn).
To allow for arbitrary polynomials, we’ll take the basis transformation

φ : x 7→ (1, x, x2, . . . , xd)

for some degree d, making the inputs (d+1)-dimensional vectors. The line we’re fitting
is of the form βTx, where β is also a (d+ 1)-dimensional vector. Our loss function is

L(β) =

n∑
i=1

(
yi − βTxi

)2
+ λ ‖β‖2 .

Again, recall that this is how we do ridge regression. We can solve this analytically for
the β that minimizes the loss, and for small enough inputs, we can use the analytical
solution. Here, the top row is as previously, with λ = 0, and the bottom row is with
some positive λ.

16

Machine learning Carl Joshua Quines

Again, we see that λ plays a similar role as k. It penalizes our interpolating polynomial
βx from being too “complicated”. What we’re doing is trying to minimize the loss
function, so λ represents the “balance” between how much we want to minimize the
sum of squares error and the regularization term.

On one end, λ = 0, and it’s normal linear regression when we only care about
minimizing the error. On the other end, as λ→∞, we only care about making the
regularization term small, which pushes β → 0. Reasonable values are somewhere in
between, which try to strike a balance between the two errors.

Statistical learning theory

We’re on the edges of an idea: some sort of trade-off between simple and complicated,
loose and tight. To pin down this idea mathematically, we’re going to need to describe
machine learning using some tools from probability, an approach that forms the basis
of statistical learning theory.

The change is to move from considering data as something fixed and given to us, to
something that’s random, something that comes from a distribution. There’s the set
of all possible examples, and the data we get is drawn from this set probabilistically,
as specified by a distribution. We only run the learning algorithm on a sample of
all of these possible examples.

The data itself might not be deterministic. Consider trying to learn a “fuzzy”
boundary for a classification problem. The same point might not always be given to
us as the same class. In this case, if you’re far from the boundary, the probability
that the sample we get is “correctly” classified goes higher. And the nearer you get,
the more noise there is; the more likely our sample is to flip the other way and be
“incorrectly” classified.

It’s often the case in the real world that our examples are fuzzy; if you tried to
predict whether a given animal is more likely to be a dog or a cat given its height and
weight, you’re going to have some inputs that map to different outputs. Here, are two
distributions, one noisier than the other, and two samples drawn from each:

Let’s restate the classification problem in this light. There’s some input space X,
which we usually take to be d-dimensional vectors. Then there’s the output space Y ;

17

Machine learning Carl Joshua Quines

in the classification problem it’s a discrete set of labels, but in a general regression
problem it could be general real vectors too. The goal is to learn some probability
distribution D on the set X×Y . One way to think about D is as an example generator:
every time we ask for a sample from D, it picks some (x, y) according to the probability
distribution, and hands it to us.

Then we assume we have a sample S, which consists of, say, n examples (x1, y1), . . .,
(xn, yn), drawn independently from D. We then feed S into a learning algorithm, and
out comes a model f . We can think of a learning algorithm as a way to choose some
f out of the hypothesis space H, the set of all possible hypotheses we’re considering.
This is pretty meta, so it’s important to think through the difference:

Exercise 3.1. Let x be some vector in the input space X.

1. How do you interpret y, as a random variable, over the possible (x, y) drawn
from D?

2. Think of S itself as a random variable. Then the learning algorithm produces a
model f , and as it depends on S, it’s a random function. How do you interpret
f(x), as a random variable, over the possible samples S drawn from D?

3. Now let’s say we have a fixed S, which produces a fixed model f . How do you
interpret f(x), as a random variable, over the possible ways to draw x from D?

Bias–variance tradeoff

We know how to judge a particular model f . We just draw (x, y) from D, and we know
that f is a good model if it’s pretty likely that f(x) is y. The probability that f(x)
is not y is called the generalization error: it’s how bad f performs on the actual
distribution D.

The goal of a learning algorithm is to find f with as low generalization error as
possible, given only a limited sample S. But we can’t compute generalization error:
we don’t know the actual distribution!

We can try to settle with measures like the empirical error, which is the average
error in the sample S, rather than the entire distribution D. But the problem is that
empirical error isn’t always a good measure of generalization error: a really overfitted
f would have zero empirical error, but huge generalization error:

While overfitting is a property of a particular model, we can also describe learning
algorithms that tend to produce overfitted models. If a learning algorithm was perfect,
then it wouldn’t matter what the sample we give it is; it’d always return the best
possible model f . Unfortuantely, we have to settle for less. But if a learning algorithm

18

Machine learning Carl Joshua Quines

is good, then we’d expect it to produce a similar model no matter what the sample we
give to it.

Here’s an example. The distribution D represents a fuzzy classification boundary.
Not only is the boundary fuzzy, but it’s also more likely to draw samples from inside the
boundary, rather than outside the boundary. The top row shows four samples from D.
The second row represents the boundaries you’d get from running 1-nearest neighbors,
and the third row represents what you’d get from running 20-nearest neighbors:

We say a learning algorithm has high variance if the output varies a lot if you
change the sample. We can measure this by looking at the variance of f(x), over all
x ∈ X, over all samples S. Here, 1-nearest neighbors has high variance, and we know
a good learning algorithm cannot possibly have high variance. In contrast, 20-nearest
neighbors produces similar boundaries each time; it’s more likely to draw from inside
the boundary, so even if you’re far away from the boundary, most of the neighbors are
more likely to be inside.

The way to describe how 20-nearest neighbors messes up is to say it has high
bias. A learning algorithm has high bias if no matter what f it chooses, it has high
generalization error. It’s high bias if it’s not powerful enough to produce a good model
in the first place. So note that 1-nearest neighbors has low bias: it’s possible, although
unlikely, for the algorithm to find really good decision boundaries.

Again, to clarify, bias and variance are a property of the learning algorithm, and
not the individual models they produce. Learning algorithms with high variance tend
to produce models that are overfitted. Learning algorithms that have high bias tend
to produce models that are underfitted.

This captures exactly what we’ve been seeing when we try to vary k for k-nearest
neighbors, or λ for ridge regression. We’re moving between the bias–variance
tradeoff. Changing k and λ gives us different learning algorithms, moving from
low-variance and high-bias, to high-variance and low-bias.

Cross-validation

The way we choose hyperparameters, in practice, is through cross-validation. First,
we split the data into training, validation, and test data. We pick some value of the

19

Machine learning Carl Joshua Quines

hyperparameter, train it on the training set, then test how it performs on the validation
set. We pick the hyperparameter according to what gives the best performance on the
validation set.

Typically this is done through early stopping. Suppose, for example, that we were
picking λ for the polynomial regression we were doing earlier. The way early stopping
would work is to start at some large value of λ, then keep decreasing λ. This, typically,
decreases the empirical error on the validation set, up to a point. As soon as we hit
that point—when decreasing λ would make the error go up again—we stop. This is
because the effect of λ on the error is something like a U-shape:

This U-shape makes sense intuitively. On the left side, you have low variance, but
high bias, so we couldn’t possibly find a good model in the first place. On the right
side, you have high variance, but low bias, so you’d have to be really lucky to get a
good model. This is a pretty common pattern in machine learning; the error is often a
convex function of the parameters.

Some questions. Why do we have a test set? Well, the process of cross-validation
can also overfit the data, so to get a good measure of the performance of the final
model, we use the test data. This is why the test data is also called holdout data;
it’s data that’s not used at all in making the model or selecting the learning algorithm.

What if we want to make changes after seeing the final model’s performance on the
test set? Then you’d be liable to overfitting: improving performance on the test set
specifically is equivalent to just improving performance on the training and validation
set. By not using the test set at all in the training process, it remains unbiased. Kind
of like Goodhart’s law, if you happen to know what that is.

What if we don’t have enough data? This is a pretty common problem; often we
don’t have enough data to split it between three sets. One popular approach is to use
n-fold cross-validation. Split the non-test data into n sets, let’s say S1, . . . , Sn. Fix
a value for the hyperparameter. Then we can train on S2, . . . , Sn and then validate
on S1, and we can also train on S1, S3, . . . , Sn and validate on S2, and so on. We can
then use the average validation error, and adjust the hyperparameter based on that.

How do we decide how to move the hyperparameter? In the case of, say, n-nearest
neighbors, there are a discrete set of choices for n, and we can just check each one.
But in the general case, the hyperparameters are real numbers, like λ. In this case, we
can have some fixed step size, and we can decrease λ by this step size each time.

But it turns out a better method is to use a learning rate, the heart of a method
called gradient descent, which we’ll talk about when we talk about neural networks.
So keep this question in mind!

20

Machine learning Carl Joshua Quines

Model selection

I know that was a lot of words, I’m sorry. Since this is supposedly a math camp,
let’s try to finish with some math. This is one of my favorite illulstrations of model
selection, taken from MacKay’s information theory book.

Let’s say we have a sequence S, which is −1, 3, 7, 11. What are the next two
numbers? Well, we can say 15, 19, with the rule being an+1 = an + 4. But what about
−19.9, 1043.9, with the rule being an+1 = − 1

11a
3
n + 9

11a
2
n + 23

11? Both of these fit the
data, yet one clearly “feels better” than the other.

We can write this out using Bayes’s theorem. Let H1 model the sequence as an
arithmetic progression, and H2 model the sequence as a cubic function of the previous
term. We don’t know the distribution of all possible ways S could’ve been sampled.
But to compare between H1 and H2, like we did in linear discriminant analysis, it
suffices to just take the log ratio:

log
P (H1 | S)

P (H2 | S)
= log

P (H1)

P (H2)
+ log

P (S | H1)

P (S | H2)
.

We can say that H1 is more likely just beacuse arithmetic progressions are more
common than cubic recursions, or in other words, P (H1) > P (H2). But let’s not make
that assumption, and concentrate on the difference between P (S | H1) and P (S | H2).

To find P (S | H1), we need to say exactly how H1 generates sequences. There are
two parameters of an arithmetic progression: the first term and the common difference.
Suppose that these were both integers chosen uniformly from −50 to 50, because we
have to make some assumptions. There’s only one possible choice of first term and
common sequence that could give rise to S, which gives

logP (S | H1) = log

(
1

101
· 1

101

)
= −9.23.

Let’s make similar assumptions to compute P (S | H2). It’s specified by the first term,
and then each of the coefficients in ax3 + bx+ cx+ d. We’ll assume that a, b, c, and
d are fractions, with denominators between 1 and 50, and let’s say their numerators
are from −50 to 50, like the first term. There’s essentially only one way to choose the
coefficients, but we have to account for equal fractions. Doing this, we get

logP (S | H2) = log

(
1

101
· 4

101
· 1

50
· 4

101
· 1

50
· 1

101
· 50

50
· 2

101
· 1

50

)
= −31.35.

That’s a huge difference. Of course, the specific probabilities will depend on how we
assume H1 and H2 generate their hypotheses, but the general idea is there. As H2

has more parameters, the probability we select any specific choice of parameters is
smaller than H1. So Bayes’s theorem leads to Occam’s razor.

This fits into our discussion of bias and variance earlier. In this case, H1 and H2

have the same “bias”, since they both fit the sample equally well. It’s just the case
that H1 is “lower variance” than H2. The situation would be different if H2 could fit
the data but H1 couldn’t.

21

Machine learning Carl Joshua Quines

4 Neural networks (August 8)

Prerequisites: Matrices, vectors, differentiation, the first seminar. Nice, but not
necessary: matrix differentiation, the second and third seminars.

Gradient descent

Time to tie up some loose ends. We’ve talked about gradient descent in each of the
past three seminars and it’s time to finally talk about what it is. Note that each time
we cited gradient descent was an optimization problem. What’s the β that minimizes
this loss function? What’s the k or λ that minimizes validation error?

Generally, each of these problems have the same form: minimize some objective
function f on the input x. When the gradient ∇f is easy to compute, and even in
some cases when it isn’t, we can use gradient descent to look for a minimizer x.

Consider, first, the case when f is a one-dimensional function. We know that f ′(x)
represents the slope of the tangent line; it points toward the direction where f(x)
grows the fastest, locally. In multiple dimensions, it’s the same idea with ∇f(x).

So if we want to make f(x) small, we should move x against the direction of the
gradient. Assume we have some hyperparameter α, the learning rate. Set x to be
something arbitrary. Then in each step, we change x to be x− α∇f(x), and repeat
until we’re happy with how small f is. We can stop after a fixed number of steps, or
when the change in x is small enough, or when ∇f(x) has small enough norm. Note
that gradient descent doesn’t require us to compute f(x) anywhere in the process; we
only need to do ∇f(x) fast.

There are lots of questions about this. We won’t go through them in much detail,
but we will outline the answers. First, how do we pick α? In the convex case, there’s
always some α such that gradient descent converges, and anything smaller than that
α would converge too. The idea is that larger values of α can continually “overshoot”
and never hit the minimum. But if α is too small, then convergence would take a
really long time.

22

Machine learning Carl Joshua Quines

So typically, you’d want some sort of adaptive step size, where the size of α also
depends on the value of ∇f(x). Popular implementations of this are AdaGrad and
Adam. Alternatively, you could add something called momentum, where instead of
∇f(x), the update is a combination of ∇f(x) and the previous direction of the update.

Then how about gradient descent when ∇f(x) is difficult to compute analytically?
Typically, you can use tricks like numerical differentiation or automatic differ-
entiation to compute these derivatives. What about if you know it analytically, but
it’s just expensive to compute? For example, for ridge regression on β on the points
(x1, y1), . . . , (xn, yn), the gradient of the loss is

∇L(β) = −
n∑

i=1

2
(
yi − βTxi

)
xi + 2λβ.

The sum can have thousands of terms when n is large, and you’re also working
with hundred-dimensional vectors! In this case, you can do stochastic gradient
descent, which appears so often that it’s called SGD. Instead of computing the whole
gradient, you just compute it for a randomly chosen term in the sum. In practice, the
contributions of each term will average out. Regular gradient descent is sometimes
called batch gradient descent, or BGD, in contrast.

Finally, how about gradient descent on non-convex functions? That’s an entire can
of worms that I really don’t have the time to talk about, so I’ll leave this one for you
to read more about.

Neural networks

Recall that when we try to do a linear regression, we want to fit a series of inputs and
outputs (x1, y1), . . . , (xn, yn). And we assume that each x is a d-dimensional vector,
and each y is a k-dimensional vector. Then the fit β would be a d × k matrix, and
there’d be a constant k-dimensional vector β0, and we try to fit βTxi + β0 to match yi.

Well, training a layer of neurons is like a spicy linear regression. A layer of neurons
takes some d-dimensional vector x, and multiplies it with the weights W , a d × k
matrix. There’s also the bias weights W0, a k-dimensional vector. The resulting
k-dimensional vector, W Tx+W0, is known as the pre-activation, which we call z.
So far it’s the same, except we call β and β0 as W and W0 instead.

The new part comes with some scalar function f , called the activation function.
We f to each coordinate of W Tx+W0 to get f(W Tx+W0), the k-dimensional vector
that the layer outputs. This is called the activation of the layer, which we call a.
Hence a neuron is represented with its weights W,W0, and its activation function f :

Now let’s talk about finding weights. We want to find them such that each ai =
f(W Txi +W0) matches yi. Usually we have some loss function L, and we minimize

23

Machine learning Carl Joshua Quines

the sum of L(ai, yi). Note that linear regression is a special case of a neural network:
for a linear regression, the activation is f(x) = x, and the loss is (yi − ai)2.

And that’s it. We’ve just described a single-layer neural network, which is nothing
more than a linear transformation of the input, fed through an activation function. If
it sounds simple, you’re right; a single layer is pretty simple in itself.

What makes it a neural network, though, is through stacking several layers together.
More layers means the network has more depth, and it’s where we get the name deep
learning. If the ith layer had weights Wi,Wi,0, and activation function fi, then we’d
represent it with this diagram:

In essence, that’s all a neural network is. A linear transformation, followed by an
activation function, and so on. To be technical, we described a specific kind of neural
network called a multilayer perceptron, but when people say “neural network”
without qualification, they usually refer to this.

In context

Let’s take a step back, and look at the neural network in context. So far, what we’ve
described is a model. A neural network is a model: it takes inputs, and gives outputs.
It is not a learning algorithm, not in itself. To specify the learning algorithm, we need
to talk about how, given the input, we produce a model.

Generally, this process is called training. We train a given neural network to
match training data by adjusting its weights. Often, the choices of f are complicated
enough that we can’t find the weights analytically, so instead we do something called
backpropagation. The idea is to apply gradient descent on each layer of the network;
we’ll talk about this more later.

But this isn’t quite a learning algorithm. In order to train a neural network, you
need to specify what the network looks like in the first place. How many layers does
it have, what are their sizes, what’s the activation function? These are all called the
architecture of the network. So the whole learning algorithm is something like this:

And the thing about this whole learning algorithm is that there are lots of hyperpa-
rameters. The architecture of the network is a hyperparameter. And training takes a
lot of hyperparameters, like learning rate, and even more if you choose to use adaptive
step size or momentum.

24

Machine learning Carl Joshua Quines

With all of these hyperparameters that go into using neural networks, choosing
them is sometimes more art than science. As we talked about in the generalization
seminar, more parameters means the model can fit all sorts of underlying patterns.
But it’s precisely because of this we risk overfitting. In fact, networks can approximate
any function arbitrarily well, a result of universal approximation theorems. So
choosing architecture and training the network needs a lot of care.

We’ll spend the rest of the time talking about how backpropagation works, exactly,
how architecture is designed, and how training is done in practice.

Backpropagation

The way we want to train a neural network, in principle, is to do some sort of gradient
descent on the weights. The key thing we need to be able to do is compute the gradient
of the loss, L with respect to the weights, W ; this is the only thing we need to do
gradient descent.

The way we compute this gradient is backpropagation, which is a fancy word for
“using the chain rule multiple times”. Let’s consider a single layer, with input x, weights
W,W0, and activation function f . Recall that the pre-activation is z = W Tx + W0,
and the activation is a = f(z).

From the chain rule, we know that

∂L

∂W
=
∂L

∂a
· ∂a
∂z
· ∂z
∂W

=
∂L

∂a
· ∂a
∂z
· xT .

We get ∂L
∂a from the actual loss function, and ∂a

∂z from the choice of f .
Now let’s consider this for ` layers. Let the ith layer have weights Wi,Wi,0 and

activation function fi. Note the activation of the ith layer, ai, is the input to the
i+ 1st layer. The input to the entire network is x = a0, and the output is a`.

Now for the last layer, as above,

∂L

∂W`
=
∂L

∂a`
· ∂a`
∂z`
· aT`−1.

So that tells us how to compute the gradient for the last layer. For the layer behind it:

∂L

∂W`−1
=
∂L

∂a`
· ∂a`
∂z`
· ∂z`
∂a`−1

· ∂a`−1
∂z`−1

· ∂z`−1
W`−1

=
∂L

∂a`
· ∂a`
∂z`
·W T

` ·
∂a`−1
∂z`−1

· aT`−2.

And you can keep going. We don’t have to recompute every term of this product, since
we’ve already computed most of them for the layer in front. This produces something
like this diagram:

We won’t burden ourselves with the implementation, as this is a math camp, but
this should at least show that doing the update step scales linearly in terms of the

25

Machine learning Carl Joshua Quines

number of layers. So as long as you know how to differentiate fast-ish and multiply
matrices fast-ish, backpropagating is fast-ish.

It bears repeating: what we’ve done is said how to do the update step of gradient
descent. We still haven’t talked about the specifics of when we do this update step in
the first place; we’ll talk about this when we get to training.

Architecture

In practice, how is architecture designed? First, we’d need to specify the number of
layers, which describes the network depth. For most practical purposes, there are
at least two layers. The last layer is called the output layer, and the intermediate
layers are called hidden layers. When people say “single-layer neural network” they
often mean one hidden layer, and one output layer.

Then you need to describe each layer, which means describing two things: its
activation function, and its width. The width is the dimension of the output vector,
also called its number of units or nodes or neurons. We haven’t talked about the
choice of activation function, which is a crucial part of what makes it a neural network.
If all activation functions were the identity, then the entire network would just be a
linear transformation!

There are only a handful of widely-used activation functions. We think of choosing
activation functions for hidden layers and output layers separately, and we usually
pick the same activation function for each of the hidden layers in a network. For the
first part, let’s talk about hidden layer activations.

One that used to be popular is the sigmoid function

σ(x) =
1

1 + e−x
.

I’m not sure why it was popular, other than the fact it has a simple derivative,
σ(x) = σ(x) (1− σ(x)), and it’s non-linear. The problem with sigmoid is that the
gradients towards the tails become small really fast, a problem known as vanishing
gradients, which is a problem if you have a lot of layers.

The sigmoid is related to using tanh(x), which is a scaled and shifted sigmoid. One
reason to prefer tanh is that it has stronger gradients, but it’s also subject to the
vanishing gradient problem. It still performs well, sometimes. Hence kernel SVMs that
used tanh were popular shortly after neural networks first became popular.

The most popular activation function is probably the rectified linear unit, or
ReLU, and its variants. It’s simply

ReLU(x) =

{
0 if x < 0

x if x ≥ 0.

26

Machine learning Carl Joshua Quines

As ReLU doesn’t have a saturated gradient, it apparently tends to converge faster
than sigmoid and its variants. It also isn’t subject to vanishing gradients as much.
In practice, a lot of ReLU variants avoid the flat 0 for negative x, like leaky ReLU
which is 0.01x for negative x, or ELUs or GELUs or SELUs or Swish or Softplus.
Choosing between these is an art.

Choosing output activations is comparably much simpler. For regressions, we usually
just have the identity for the activation. A common exception is when we want the
output to be a probability, which also comes up when we do classification with only
two classes. In that case, we use σ(x).

Note that it lies in the range (0, 1). But more than that, the log ratio of σ(x) to
1− σ(x) is just x, similar to what we observed with linear discriminant analysis! It
makes more sense to adjust x rather than adjust a probability between 0 and 1. There
are deeper, Bayesian reasons for the log ratio, which I won’t go into.

Similarly, when we do a classification with multiple classes, we take the activation to
be softmax. This isn’t really an activation function in the pure sense, as it operates
over the entire pre-activation vector (x1, x2, . . . , xk), and outputs(

e−x1

e−x1 + · · ·+ e−xk
,

e−x2

e−x1 + · · ·+ e−xk
, . . . ,

e−xk

e−x1 + · · ·+ e−xk

)
.

Note that the coordinates sum to 1, representing a probability distribution. Further,
the log ratio of two output probabilities is linear in the xi.

To give an example, consider the MNIST dataset, classifying lots of 28×28 grayscale
pictures of handwritten digits. The output layer will have 10 units and a softmax
activation. All of our hidden layers use ReLU.

A single hidden layer with 32 units and sigmoid activation already has a 87%
accuracy after some training. Making it three hidden layers, all with 32 units, doesn’t
significantly improve the accuracy. A single hidden layer with 2048 units has around
95% accuracy. Five hidden layers, with 2500, 2000, . . . , 500 units, along with a little
input preprocessing, bumps the accuracy to 99.6%. And that’s without doing anything
fancy, like using convolution neural networks or something.

Training

And then comes the matter of training. Let’s talk about the loss function first. For
regression problems, we usually used square loss. But we need to treat probabilities,
and in general, classification, differently. In this case, we’re finding the “distance”
between two probability distributions, so it makes more sense to use cross-entropy
rather than square loss. For two distributions a and y, where we want to update a to
match y, the cross-entropy is

L(a, y) = −
k∑

i=1

yi log ai.

There are, again, Bayesian reasons to choose this loss function. Suppose we predicted
the distribution a. We then sample according to the true distribution y, getting ni
items in the ith class. Then according to our model,

P (n | a) = an1
1 a

n2
2 · · · a

nk
k .

27

Machine learning Carl Joshua Quines

Setting N = n1 + n2 + · · ·+ nk,

− logP (n | a)

N
= −

k∑
i=1

ni
N

log ai.

In the limit, the ni/N are yi. So maximizing the likelihood P (n | a) means minimizing
the cross-entropy.

Let’s talk about gradient descent. There’s BGD, which uses the whole gradient, and
SGD, which only uses a randomly selected term of the gradient. BGD is slower, but
SGD can badly approximate the gradient.

So we often do something where we use several, but not all terms. This is mini-
batch gradient descent and the number of terms you use is the batch size. After
computing the gradient, you update the weights, and this is a single iteration.

And in practice, this is done by shuffling all the training data, and partitioning it
into batches, rather than randomly sampling each time. A run through the entire
dataset is an epoch. So an epoch consists of several iterations, and in each iteration,
you process a batch to compute the gradient of.

There are lots and lots more concepts in training that I don’t have time to talk
about. A lot of them have to do with gradient descent itself, like adaptive step sizes,
momentum, and so on. But there are other things to keep in mind too, like normalizing
the inputs, picking initial weights, clipping gradients, early stopping, dropout.

28

Machine learning Carl Joshua Quines

5 What next?

There are a lot more topics that I wish I could’ve covered, but couldn’t, because I
didn’t really have the time:

• The Gauss–Markov theorem, which states that doing a normal linear regression
gives the plane with the lowest sampling variance among all planes that could fit
the data, with some assumptions.

• The bias–variance decomposition for linear regression, providing a mathematical
way to explain the bias–variance tradeoff.

• What VC dimension is, how it measures the complexity of a model, and how it
leads to some nice bounds on the generalization error.

• Some questions relating to neural networks. Why does non-linearity work so
well, and why does depth matter? Why does gradient descent just happen to
work well too? How do we interpret neural networks, or design neural networks
that can be interpreted?

• Dimensionality reduction, which I think is one of the cooler machine learning
topics, and techniques like principal component analysis, applying linear discrim-
inant analysis, or t-distributed stochastic neighbor embedding. Or you know,
PCA, LDA, t-SNE.

• Ensemble methods, like bagging and boosting, and the surprising result that
combining several models can sometimes do better than a single model. Also,
decision trees, and their ensemble, the random forest.

• The many flavors of neural networks: convolutional neural networks, recurrent
neural networks, generative adversarial networks, long short-term memory. Or
CNNs, RNNs, GANs, LSTMs. And autoencoders and transformers too.

• Important ethcial issues, biases in data, models, and learning algorithms, how
they can affect our future, how we can correct for these, and how to do machine
learning with people in mind.

• And lots more: clustering, ranking, anomaly detection, recommender systems,
sequential models, online learning, reinforcement learning, the curse of dimen-
sionality, probably approximately correct learning, Rademacher complexity.

Entire books have been written about machine learning, because it’s such a wide
field. If you want an introduction beyond the problems of regression and classification,
take a machine learning class, or read an introductory textbook. If you want to learn
more about underlying theory, you can read Foundations of Machine Learning, or other
statistical learning theory books, and learn about PAC learning and VC dimension.
If you want to read some exciting, latest research, learn about the kinds of neural
networks and you’d be ready to read many current papers.

29

	Classification (July 19)
	Non-linearity (July 25)
	Generalization (August 1)
	Neural networks (August 8)
	What next?

