Parallel sum

CJ Quines
January 6, 2024

Warmup

1. (Optic equation \boldsymbol{T}^{π}) A lens of negligible thickness and focal length f has distance a to an object and b to the object's image. Prove that $\frac{1}{f}=\frac{1}{a}+\frac{1}{b}$.
2. Two resistors, of resistance $A \Omega$ and $B \Omega$, are connected in parallel. Let T be their equivalent overall resistance. Prove that $\frac{1}{T}=\frac{1}{A}+\frac{1}{B}$.
3. (Crossed ladders \int (In the diagram, $A B\|C D\| E F$. Prove that $\frac{1}{C D}=\frac{1}{A B}+\frac{1}{E F}$.

4. Pump A can fill a pool in a hours, and pump B can fill the same pool in b hours. If both pumps are used at the same time, it takes t hours. Prove that $\frac{1}{t}=\frac{1}{a}+\frac{1}{b}$.

Definition

Let $\mathbb{R}^{*}=\mathbb{R} \cup\{\infty\}$. The parallel sum operator (also known as harmonic sum, reduced sum, reciprocal sum, or the same terms but with addition instead of sum), over \mathbb{R}^{*}, is defined by

$$
a \| b=\frac{a b}{a+b}
$$

In other words,

$$
\frac{1}{a \| b}=\frac{1}{a}+\frac{1}{b}
$$

In the order of operations, we'll take parallel to be between multiplication and addition, so $a b\|c=(a b)\| c$ and $a+b \| c=a+(b \| c)$.

It's called "parallel" because of resistors. Resistors connected in parallel have total resistance equal to their parallel sum. We can also think of how, in crossed ladders, we had three parallel line segments, and the length of the center segment was the parallel sum of the other two lengths. Or how, with pumps working in parallel, the time taken is the parallel sum of the individual times.

Around the first third of problems in this set are algebraic properties, and the rest are some random, kinda unrelated, appearances in geometry. It's not clear to me whether they're related-if you figure something out, email me: cj@cjquines.com 亿.

Problems

1. Which of the following properties about || are true? Can you "fix" the false properties so that they're true?
1.1 It's commutative: $a\|b=b\| a$.
1.2 It's associative: $a\|(b \| c)=(a \| b)\| c$.
1.3 Repeated parallel sum is multiplication: $\underbrace{a\|a\| \cdots \| a}_{b \text { times }}=a b$.
1.4 There's an identity: $a \| \infty=a$.
1.5 There's inverses: $a \|-a=\infty$.
1.6 Zero is absorbing: $a \| 0=0$.
1.7 Multiplication distributes: $a(b \| c)=a b \| a c$.
1.8 Exponentiation distributes: $a^{b \| c}=a^{b} \| a^{c}$.
1.9 Parallel sum of $\log ^{2}$ arithms: $\log _{b} a \| \log _{c} a=\log _{b c} a$.
1.10 The binomial theorem works: $(a \| b)^{2}=a^{2}\|2 a b\| b^{2}$.
1.11 Polynomials work: $x^{2}\|-5 x\| 6=(x \|-2)(x \|-3)=0$ has solutions $x=2$ and $x=3$.
2. As a Diophantine equation, it's the optic equation $\boldsymbol{\pi}$:
2.1 Given $a \| b=c$, prove that $(a-c)(b-c)=c^{2}$.
2.2 Find all pairs of positive integers (a, b) such that $a \| b=25$.
2.3 (BMO2 2005/1 ك) Let c be a positive integer. Suppose there are 2005 pairs of positive integers (a, b) such that $a \| b=c$. Prove that c is a perfect square.
2.4 Let a, b, c be positive integers such that $a \| b=c$. Prove that $a^{2}+b^{2}+c^{2}$ is a perfect square. If $(a, b)=1$, prove that $a+b$ and $a b c$ are perfect squares.
3. Some properties related to transport of structure $\boldsymbol{\pi}$:
3.1 Note $2+3=5$ and $\frac{1}{2} \| \frac{1}{3}=\frac{1}{5}$. Similarly, $3 \| 6=2$ and $\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$. Is this coincidence?
3.2 We call this dualizing: you can dualize an equation by taking reciprocals, and swapping + and $\|$. Convince yourself that dualizing a true equation also gives a true equation.
3.3 Prove that $1=\left(\frac{1}{a}+\frac{1}{b}\right)(a \| b)$. What do you get by dualizing this?
3.4 Prove that $a b=(a+b)(a \| b)$. As a special case, $a=(a+1)(a \| 1)$. What do you get by dualizing this?
3.5 Prove that $a+1=\sum_{i=0}^{\infty}(a \| 1)^{i}$. What do you get by dualizing this?
3.6 Let A be the arithmetic mean and H the harmonic mean, so for example, $A(a, b)=\frac{a+b}{2}$. How are $H(a, b)$ and $a \| b$ related? What about $H(a, b, c)$ and $a\|b\| c$? Why is $\|$ also called the harmonic sum?
3.7 If you know what a field is: Let $K=\mathbb{R}^{*} \backslash\{0\}$. Convince yourself that K is a field, with addition $\|$ and multiplication \cdot. Why do we need to remove 0? Prove that this field is isomorphic to \mathbb{R}.
4. Lehman's inequality \mathbb{Z} :
4.1 Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be defined as $f(x)=x \| a$. Show that $f(x+y) \geq f(x)+f(y)$.
4.2 Show that $(a+b) \|(c+d) \geq(a \| c)+(b \| d)$. When does equality hold?
4.3 Show that

$$
\left(a_{1}+\cdots+a_{n}\right) \|\left(b_{1}+\cdots+b_{n}\right) \geq\left(a_{1} \| b_{1}\right)+\cdots\left(a_{n} \| b_{n}\right)
$$

Note that this is Minkowski's inequality $\boldsymbol{\pi}$ with an exponent of -1 .
4.4 Lehman's inequality proper: Show that

$$
\left(a_{11}+\cdots+a_{1 n}\right)\|\cdots\|\left(a_{m 1}+\cdots+a_{m n}\right) \geq\left(a_{11}\|\cdots\| a_{m 1}\right)+\cdots+\left(a_{1 n}\|\cdots\| a_{m n}\right)
$$

The original proof involved an $m \times n$ grid of resistors, if you care about circuits.
5. Inverse Pythagorean theorem $\boldsymbol{\pi}$:
5.1 Let $A B C$ be a triangle with $\angle B A C=90^{\circ}$. Let d be the distance from A to $B C$. Prove that $d^{2}=A B^{2} \| A C^{2}$.
5.2 Let $A B C D$ be a tetrahedron with $\angle B A C=\angle C A D=\angle D A B=90^{\circ}$. Let d be the distance from A to the plane $B C D$. Prove that $d^{2}=A B^{2}\left\|A C^{2}\right\| A D^{2}$.
6. Angle bisectors, though some may be hidden:
6.1 (Rhombus lemma $\boldsymbol{\pi}$) In $\triangle A B C$, points D and E are on $A B$ and $A C$ such that $C D$ bisects $\angle A C B$ and $B C \| D E$. Prove that $E C=B C \| A C$.
6.2 In $\triangle A B C$, points D and E are on $A B$ and $A C$ such that $C D$ bisects $\angle A C B$ and $C D \perp D E$. Prove that $E C=2(B C \| A C)$.
6.3 In equilateral $\triangle A B C$, let D be a point on $(A B C)$ such that D is on the arc $B C$ not containing A. Let $P=A D \cap B C$. Prove that $D P=B P \| C P$.
6.4 (Nomogram $飞$) In $\triangle A B C, \angle A B C=\angle A C B=45^{\circ}$. Let D be a point on $(A B C)$ such that D is on the arc $B C$ not containing A. Let $P=A D \cap B C$. Prove that $D P=\sqrt{2}(B P \| C P)$.
7. Squares and triangles:
7.1 (ك) Let $A B C D$ be a square, and E a point on $C D$. Let $F=A E \cap B C$, and $G=A E \cap B D$. Prove that $A G=A E \| A F$. Prove that $A B^{2}=A E^{2} \| A F^{2}$.
7.2 In $\triangle A B C$ with $\angle B A C=90^{\circ}$, points D, E, and F are on sides $A B, B C$, and $C A$, respectively, such that $A D E F$ is a square. Prove that the side length of the square is $A B \| A C$. Why is this a special case of $6.1 ?$
7.3 A square is inscribed in $\triangle A B C$, such that one side lies on $B C$, and the other two vertices lie on $A B$ and $C A$. Let h be the length of the altitude to $B C$. Prove that the side length of the square is $h \| B C$. Why does this generalize 7.2 ?
7.4 In $\triangle A B C$ with $\angle B A C=90^{\circ}$, a square is inscribed as in 7.2 with side length s, and a square is inscribed as in 7.3 with side length t. Prove that $s^{2}=t^{2} \| B C^{2}$.
8. Configuration issues:
8.1 Choose non-collinear points A, B, C. Choose D such that $C D \| A B$. Let $E=A C \cap B D$, and let $F \in A D$ such that $C D \| E F$. Is it always true that $A C+C E=A E$?
8.2 Given parallel segments $A B \| C D$, define the directed ratio $\frac{A B}{C D}$ to be positive if $A B$ and $C D$ point in the same direction, and negative if they point in opposite directions. In 8.1, prove that $\frac{A C}{A E}+\frac{C E}{A E}=1$, where ratios are directed.
8.3 For simplicity, we'll say $A C+C E=A E$, where lengths are directed. We say this only if we can convert the statement to one with directed ratios. In 8.1, prove that $C D=E F \| A B$, where lengths are directed.
9. Is there something projective going on?
9.1 (\mathbb{C}) In $\triangle A B C$, points D, E, and F are on $B C, C A$, and $A B$ respectively, such that $D E \| A B$ and $D F \| C A$. Let $P=B E \cap D F$ and $Q=C F \cap D E$. Prove that $P Q=B D \| D C$.
9.2 (Complete quadrangle \mathbb{C}^{\top}) Let $A B C D$ be a quadrilateral, $E=A B \cap C D, G=A C \cap B D$, $F=E G \cap A D$, and $H=E G \cap B C$. Prove that $E G=2(E F \| E H)$.
9.3 (Harmonic quadrilaterals \mathbb{C}) Let ω be a circle and P a point outside it. Choose distinct points A, B, X, Y on ω such that P, A, and B are collinear, and $P X$ and $P Y$ are tangent to ω. Let $Q=A B \cap X Y$. Prove that $P Q=2(P A \| P B)$.
9.4 (\mathbb{C}) Let G be the centroid of $\triangle A B C$. A line through G intersects $B C, C A$, and $A B$ at D, E, and F. Suppose that $G D \leq G E \leq G F$. Prove that $G D=G E \| G F$.
9.5 (\mathbf{Z}^{\top}) Let $A B C D$ be a quadrilateral, $E=A B \cap C D$, and $F=A D \cap B C$. Let $A^{\prime}, C^{\prime}, E^{\prime}, F^{\prime}$ be points on line $B D$ such that $A A^{\prime}\left\|C C^{\prime}\right\| E E^{\prime} \| F F^{\prime}$ and $A A^{\prime}<C C^{\prime}$. Prove that $A A^{\prime}=C C^{\prime}\left\|E E^{\prime}\right\| F F^{\prime}$.
10. Tangents and circles:
10.1 (Descartes' theorem \mathbb{Z}^{\top}) Three pairwise externally tangent circles have a common external tangent. Suppose the circles have radii $a>b>c$. Prove that $\sqrt{c}=\sqrt{a} \| \sqrt{b}$.
10.2 (ك) Let $A B$ be a diameter of circle Ω. Let ω be a circle tangent to $A B$ at C and internally tangent to Ω at D. Prove that $C D^{2}=2\left(A C^{2} \| C B^{2}\right)$.
10.3 (Twin circles \mathbb{Z}) Let A, B, and C be three collinear points. Let Ω be the circle with diameter $A C$, and ω be the circle with diameter $A B$. Let D be a point on Ω such that $B D \perp A C$. Let r be the radius of the circle internally tangent to Ω, externally tangent to ω, and tangent to $B D$. Prove that $r=A B \| B C$.
11. The inradius:
11.1 Let $\triangle A B C$ have inradius r and altitudes h_{a}, h_{b}, and h_{c}. Prove that $r=h_{a}\left\|h_{b}\right\| h_{c}$.
11.2 Let $\triangle A B C$ have inradius r and exradii r_{a}, r_{b}, and r_{c}. Prove that $r=r_{a}\left\|r_{b}\right\| r_{c}$.
11.3 (Euler's theorem $\boldsymbol{C}^{\boldsymbol{T}}$) Let $\triangle A B C$ have inradius r and circumradius R. Let d be the distance from the incenter to the circumcenter. Prove that $r=(R-d) \|(R+d)$.
11.4 ($\boldsymbol{\pi}$) Let $A B C D$ be a quadrilateral with an inscribed and circumscribed circle. Let I be the incenter and r the inradius. Prove that $r^{2}=A I^{2} \| C I^{2}$.
11.5 (Fuss's theorem \mathbb{C}^{\top}) Let $A B C D$ be a quadrilateral with an inscribed and circumscribed circle. Let r be the inradius, R the circumradius, and d the distance from the incenter to the circumcenter. Prove that $r^{2}=(R-d)^{2} \|(R+d)^{2}$.

Selected sketches

2.4 Work with 2.1. Assume $(a, b, c)=1$. If $p \mid c$ then $p \mid a-c$ or $p \mid b-c$. It can't be both, as otherwise $p \mid(a, b, c)$. Thus, $p^{2} \mid a-c$ or $p^{2} \mid b-c$. This is true for every prime, so $a-c$ and $b-c$ are perfect squares, say $a-c=m^{2}, b-c=n^{2}$ and $c=m n$; substituting the parametrization and factoring works.
3.5 By 3.4, $a=(a+1)(a \| 1)$, which is $\frac{a}{a+1}=a \| 1$. Hence $1-\frac{a}{a+1}=1-a \| 1$; take the reciprocal of both sides, and expand the RHS as an infinite geometric series.
3.7 The map $x \mapsto \frac{1}{x}$ is a bijection $\mathbb{R} \rightarrow K$, as sets. It preserves addition, multiplication, and sends identities to identities; it follows K must also be a field, and one isomorphic to \mathbb{R}. A decent number of properties of $\|$ drop from this from field axioms (though you have to prove the 0 case separately).
4.1 The second derivative of f is $-\frac{2 a^{2}}{(x+a)^{3}}$ so it's concave. (It's only over \mathbb{R}^{+}.) Hence $f\left(\frac{x+y}{2}\right) \geq \frac{f(x)+f(y)}{2}$, then use distributivity.
5.2 Let $C^{\prime} \in C D$ such that $A C^{\prime} \perp C D$. Apply 5.1: $A C^{\prime 2}=A C^{2} \| A D^{2}$. Apply 5.2: $d^{2}=A B^{2} \|$ $A C^{2}=A B^{2}\left\|A C^{2}\right\| A D^{2}$. Alternatively, use De Gua's theorem; see Obscure geometry theorems $\mathbb{E}^{\boldsymbol{T}}$, page 15 . (Anything to publicize my own work...)
6.1 Let $F \in B E$ such that $A F \| B C$. Angle chase to get $\triangle E D C$ and $\triangle A C F$ are isosceles with $E C=E D$ and $A F=A C$. By crossed ladders, $E D=B C \| A F$, so $E C=B C \| A C$.
6.3 Angle chase to get $\angle C D P=\angle P D B=60^{\circ}$. Construct $B^{\prime} \in B D$ and $C^{\prime} \in C D$ such that $\triangle P B^{\prime} D$ and $\triangle P C^{\prime} D$ are equilateral. By similarity, $\frac{B P}{B C}=\frac{P B^{\prime}}{C D}=\frac{P D}{C D}$ and $\frac{C P}{B C}=\frac{P C^{\prime}}{B D}=$ $\frac{P D}{B D}$. Add to get $\frac{B P+C P}{B C}=\frac{P D}{C D}+\frac{P D}{B D}$. LHS is 1, rearrange to get $D P=B P \| C P$.
7.1 Let $H \in A D$ such that $G H \perp A D$. By similarity, $A G, A E$, and $A F$ are proportional to $H G$, $D E$, and $A B$, but by crossed ladders $H G=D E \| A B$.
7.3 Construct square $B C D E$ such that A and D are on the same side of $B C$. Let $F \in B C$ such that $A F \perp B C$. Let $B^{\prime}=A B \cap E F$ and $C^{\prime}=A C \cap D F$. There's a homothety centered at F taking $D E$ to $C^{\prime} B^{\prime}$, which takes the square $B C D E$ to the desired square. By crossed ladders, its side length is $A F\|B E=h\| B C$. (If we constructed the square external to $\triangle A B C$, there's a similar homothety centered at A-does this give another solution?)
9.1 Construct G such that $B D G F$ is a parallelogram. Prove that $P Q \| B C$. Then by crossed ladders, $P Q=F G\|D C=B D\| D C$.
9.5 This is a purely affine statement, so take an affine transformation sending C to infinity. Then $C C^{\prime}=\infty$, and the statement reduces to crossed ladders.
10.2 Let $E=A D \cap(B C D)$ and $F \in A D$ such that $C F \perp A D$. Angle chase: $\triangle A C E, \triangle E C B$, $\triangle C F D$ are all right isosceles. By 5.1: $C F^{2}=A C^{2} \| C E^{2}$, but as $C F \sqrt{2}=C D, C D^{2}=$ $2\left(A C^{2} \| C B^{2}\right)$.

