VCSMS PRIME

Session 1: Algebra 1 compiled by Carl Joshua Quines September 21, 2016

Domain and range

- 1. (11AI9) Find the range of 2^{x^2-4x+1} as x ranges over the real numbers.
- 2. (13QII6) Find the domain and range of $f(x) = \frac{6}{5\sqrt{x^2 10x + 29} 2}$.
- 3. (13NA3) Find the area of the domain of $f(x,y) = \sqrt{25 x^2 y^2} \sqrt{|x| y}$.
- 4. (11NA4) Find the domain of $f(x) = \frac{1}{\lfloor x^2 x 2 \rfloor}$.
- 5. (13QIII3, 14QII1) Find the range of $f(x) = \frac{2 \cdot 3^{-x} 1}{3^{-x} 2}$ and $g(x) = \frac{4^{x+1} 3}{4^x + 1}$.
- 6. (15AI12) Suppose that $1 y = \frac{9e^x + 2}{12e^x + 3}$. Find the integer m such that $m < \frac{1}{y} < m + 1$ for all real x.
- 7. (16NE3) Let $f(x) = \ln x$. What are the values of x in the domain of $(f \circ f \circ f \circ f \circ f \circ f)(x)$?
- 8. (13QIII5) Find the range of the following function, where a, b, c are distinct real numbers.

$$f(x) = \frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)}$$

Logarithms

- 1. (13QII1) Find $\log_2 \left(2^3 \cdot 4^4 \cdot 8^5 \cdot \dots \cdot (2^{20})^{22} \right)$.
- 2. (9QI7) How many real roots does $\log_{(x^2-3x)^3} 4 = \frac{2}{3}$ have?
- 3. (10NE14) How many times does the graph of $y = |\log_{\frac{1}{2}}|x|| 1$ cross the x-axis?
- 4. (15AI13) The product of two roots of $\sqrt{2014}x^{\log_{2014}x} = x^{2014}$ is an integer. Find its units digit.
- 5. (13QI3) Given $xy = 10^a$, $yz = 10^b$, $zx = 10^c$, find $\log x + \log y + \log z$.
- 6. (10NE10) Given $a = \log_{14} 16$, express $\log_8 14$ in terms of a.

Exponents

- 1. Solve for x:
 - a) (11QI3) $2^{2^x} = 4^3$
 - b) (9QI14) $x^x = x^2$
 - c) (9AI6) $x^{x^x} = (x^x)^x$
 - d) (10NE3) $x^{x^{2010}} = x^{2010}$
- 2. (10NE1) Find the smallest integer n such that $n^{300} > 3^{500}$.
- 3. (16QII7) Arrange from least to greatest: 25^{12} , 16^{14} , 11^{16} .
- 4. (11QII9) Given $9^{2x} 9^{2x-1} = 8\sqrt{3}$, find $(2x-1)^{2x}$.

More logarithms

- 1. (15AII1) Arrange in ascending order: $\log_3 2$, $\log_5 3$, $\log_{625} 75$, $\frac{2}{3}$.
- 2. (13QI12) Given $\frac{\log_2 x}{\log_2 2x \log_8 2} = 3$, find $1 + x + x^2 + \cdots$.
- 3. (9NA6) Suppose that $a \ge b > 1$. Find the maximum value of $\log_a \frac{a}{b} + \log_b \frac{b}{a}$.
- 4. (11NE6) There exists positive integers k, m, n whose greatest common divisor is 1 such that $k \log_{400} 5 + m \log_{400} 2 = n$. Find k + m + n.
- 5. (11NE12) Let $f(m) = 2^{2^{m^2}}$, where there are *m* twos. Find the least integer *m* such that $\log f(m) > 6$.
- 6. (14AI9) Solve for $x : \log(5^{\frac{1}{x}} + 5^3) < \log 6 + \log 5^{\left(1 + \frac{1}{2x}\right)}$.
- 7. (11QI15) Solve for $x : \log x \ge \log 2 + \log(x 1)$.

Floor, ceiling, fractional

- 1. (11NE5) Solve for $x : 2 \lfloor x \rfloor = x + 2\{x\}.$
- 2. (14ND5) Solve for $x : 2x(x \lfloor x \rfloor) = \lfloor x \rfloor^2$.
- 3. (13AI17) The number x is chosen randomly from the interval (0, 1]. Define $y = \lceil \log_4 x \rceil$. Find the sum of the lengths of all subintervals of (0, 1] for which y is odd.

Value-finding

- 1. (11QI6) Given f(1) = 5, f(x+1) = 2f(x) + 1, find f(7) f(0).
- 2. (13QII8) Suppose $f : \mathbb{R}^* \to \mathbb{R}^*$ and $f(a) + \frac{1}{f(b)} = f\left(\frac{1}{a}\right) + f(b)$. Find all possible values of f(1) f(-1).
- 3. (16NE2) A function f(x) satisfies $(2-x)f(x) 2f(3-x) = -x^3 + 5x 18$ for all real x. Find f(0).

Cauchy functional equation

- 1. (14QII5) Let $f : \mathbb{R} \to \mathbb{R}$ and f(x+y) = f(x)f(y), f(xy) = f(x) + f(y), for all $x, y \in \mathbb{R}$. Find $f(\pi^{2013})$.
- 2. (9QIII3) Suppose that $f : \mathbb{R} \to \mathbb{R}$ and f(a+b) = f(a) + f(b). Given f(2008) = 3012, find f(2009).
- 3. (13NE6) Given $f : \mathbb{R} \to \mathbb{R}$ and f(a+b) = f(a)f(b). If f(4) = 625, what is 3f(-2)?

Other functional equations

- 1. (10NE5) Given $f : \mathbb{R} \to \mathbb{R}^*$, and for all $x, y \in \mathbb{R}$, f(x-y) = 2009f(x)f(y), find $f(\sqrt{2009})$.
- 2. (14QIII2) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that f(0) = 1 and f(2xy 1) = f(x)f(y) f(x) 2y 1.
- 3. (16QIII2) If $f : \mathbb{R} \to \mathbb{R}$, f(5) = 3 and f(4xy) = 2y[f(x+y) + f(x-y)], find f(2015).
- 4. (10N3) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $x + f(x) + 2f\left(\frac{x + 2009}{x 1}\right) = 2010$, for all $x \in \mathbb{R}$.
- 5. (11N4) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that f(f(x)) + xf(x) = 1, for all $x \in \mathbb{R}$.