VCSMS PRIME

Session 1: Algebra 1
compiled by Carl Joshua Quines
September 21, 2016

Domain and range

1. Notice that $x^{2}-4 x+1=(x-2)^{2}-3$. The minimum is thus 2^{-3} and it is unbounded, the range is thus $[1 / 8,+\infty)$.
2. For the domain, $x^{2}-10 x+29=(x-5)^{2}+4 \geq 4$, thus there is no restriction for the square root. The denominator cannot be 0 , thus the radical cannot be $2 / 5$, but this is impossible. The domain is $(-\infty,+\infty)$.
From above, the radical can be anything in $[2,+\infty)$. The maximum is when the radical is 2 , giving $3 / 4$. As the radical grows larger, it approaches 0 . The range is $(0,3 / 4]$.
3. We have $25-x^{2}-y^{2} \geq 0,|x|-y \geq 0$. The first is a circle with radius 5 , the second is an absolute value function. The intersection is a sector with angle 270°, which has area $75 \pi / 4$.
4. $\left\lfloor x^{2}-x-2\right\rfloor$ will be 0 if $0 \leq x^{2}-x-2<1$. Solving yields $\left(\frac{1-\sqrt{13}}{2},-1\right] \cup\left[2, \frac{1+\sqrt{13}}{2}\right)$.
5. For f, as x approaches $-\infty, 3^{-x}$ approaches $+\infty$ and the fraction approaches 2 . As x approaches $+\infty, 3^{-x}$ approaches 0 and the fraction approaches $1 / 2$. The range of f is thus $(-\infty, 1 / 2) \cup(2, \infty)$. Similarly the range of g is $(-3,4)$.
6. Solving for y yields $y=\frac{12 e^{x}+3}{3 e^{x}+1}$. By a similar argument as number $5, m=3$.
7. We have $f^{4}(x)>0, f^{3}(x)>1, f^{2}(x)>e, f(x)>e^{e}, x>e^{e^{e}}$. The domain is $\left(e^{e^{e}},+\infty\right)$.
8. When $x=a, b, c, f$ is 1 . Since the degree of f is at most 2 , and we have three distinct values of f, by interpolating, $f(x)=1$. The range is $\{1\}$.

Logarithms

1. The sum is $1 \times 3+\cdots+20 \times 22$. This is equal to $\left(2^{2}-1\right)+\cdots+\left(21^{2}-1\right)$, which we can evaluate using the sum of squares formula as 3290 .
2. Raising both sides to the base, we have $4=\left(x^{2}-3 x\right)^{2}$. Thus $x^{2}-3 x=+2,-2$. We see that the negative case is impossible after substituting in the original equation. Thus $x^{2}-3 x=2$, which has two real roots.
3. We have $\left.\left|\log _{\frac{1}{2}}\right| x\left|\mid-1=0\right.$. Thus $\left.\log _{\frac{1}{2}}\right| x \right\rvert\,= \pm 1$, or $|x|=\frac{1}{2}, 2$. This has four real solutions, thus the graph crosses the x-axis four times.
4. After noting that $x>0$ from the $\log _{2014} x$ in the exponent, taking the base- x logarithm of both sides yields $\log _{x} \sqrt{2014}+\log _{2014} x=2014$. Substituting $u=\log _{2014} x$ and using the fact that $\log _{x} \sqrt{2014}=\frac{1}{2 u}$, we see that $2 u^{2}-4028 u+1=0$. Suppose that the roots of this are $u_{1}=\log _{2014} x_{1}, u_{2}=\log _{2014} x_{2}$ and thus by Vieta's and the product rule for logarithms we have $u_{1}+u_{2}=2014=\log _{2014}\left(x_{1} x_{2}\right)$. The product of the roots x_{1} and x_{2} to the original equation is thus 2014^{2014} which has units digit 6 .
5. Multiplying the three given equations yields $(x y z)^{2}=10^{a+b+c}$, taking the logarithms of both sides yields $\log x+\log y+\log z=\frac{a+b+c}{2}$.
6. Note that $a=\log _{14} 16=4 \log _{14} 2$. Thus $\log _{14} 2=a / 4$. Thus $\log _{8} 14=\frac{1}{\log _{14} 8}=\frac{1}{3 \log _{14} 2}=\frac{4}{3 a}$.

Exponents

1. a) Note that $4^{3}=2^{6}$. Equating exponents, $2^{x}=6$, and thus $x=\log _{2} 6$.
b) We see that $x=1$ is a solution. Equating exponents yields $x=2$. Thus $x=1,2$.
c) Equating exponents, $x^{x}=x^{2}$. From b , we have $x=1,2$. Thus $x=1,2$.
d) Again, we see that $x=1$ is a solution. Equating exponents yields $x= \pm \sqrt[2010]{2010}$. Thus $x=$ $1, \pm \sqrt[2010]{2010}$.
2. Taking hundredth roots yields $n^{3}>3^{5}=243$. The smallest integral n that satisfies this is 7 .
3. First, compare 11^{16} and $25^{12}=5^{24}$ by taking the eighth root, reducing the comparison to 11^{2} and 5^{3}. It is clear that the former is lesser. Compare $25^{12}=5^{24}$ and $16^{14}=2^{56}$ by taking the eighth root, reducing the comparison to 5^{3} and 2^{7}. It is clear that the former is lesser. From least to greatest, we have $11^{16}, 25^{12}, 16^{14}$.
4. We factor the LHS as $\left(9^{2 x-1}\right)(9-1)=8 \sqrt{3}$, by equating exponents, we have $2 x-1=\frac{1}{2}$. Thus $(2 x-1)^{2 x}=\sqrt{2} / 8$.

More logarithms

1. We see that $2^{3}<3^{2}$, thus $2<3^{2 / 3}, \log _{3} 2<2 / 3$. Since $625^{2}<75^{3}, 625^{2 / 3}<75,2 / 3<\log _{625} 75$. Finally, we see that $\log _{625} 75=\frac{\log _{5} 75}{4}<\log _{5} 3$. Thus from least to greatest, we have $\log _{3} 2,2 / 3$, $\log _{625} 75, \log _{5} 3$.
2. After solving, we see $x=1 / 2$. The infinite geometric series evaluates to 2 .
3. Simplifying, we see that this is equivalent to $1-\log _{a} b+1-\log _{b} a$. The minimum value of $\log _{a} b+\log _{b} a$ is 2 by AM-GM, thus the maximum value of the expression is 0 .
4. Simplifying, we see $5^{k} 2^{m}=400^{n}=\left(5^{2} 2^{4}\right)^{n}$. We have $k=2 n, m=4 n$. Since the greatest common divisor must be 1 , we have $n=1, k=2, m=4, k+m+n=7$.
5. After trial and error, we find $m=5$ works.
6. Let $u=5^{\frac{1}{2 x}}$. Simplifying, we have $u^{2}+125<30 u$ which factors into $(u-5)(u-25)<0$, thus $u \in(5,25)$ and $x \in(1 / 4,1 / 2)$.
7. We have $x \geq 2(x-1)$, thus $x \leq 2$. But from the argument of $\log (x-1)$ we have $x>1$. Combining, we see all $x \in(1,2]$ work.

Floor, ceiling, fractional

1. The equation is $2\lfloor x\rfloor=\lfloor x\rfloor+\{x\}+2\{x\}$, which is $\lfloor x\rfloor=3\{x\}$. As $\{x\} \in[0,1)$, the only values for which $3\{x\}$ is an integer is $\{x\} \in\{0,1 / 3,2 / 3\}$. These give solutions $x=0,4 / 3,8 / 3$.
2. Note that x must be nonnegative. We do casework on $\lfloor x\rfloor$. When $\lfloor x\rfloor=0$, clearly $x=0$. When $\lfloor x\rfloor=1$ then $2 x(x-1)=1$, which has solution $\frac{1+\sqrt{3}}{2}$. When $\lfloor x\rfloor=2$, then $2 x(x-2)=4$, which has solution $1+\sqrt{3}$. If $\lfloor x\rfloor \geq 3$, then examining the discriminant reveals there is no solution. Thus $x=0, \frac{1+\sqrt{3}}{2}, 1+\sqrt{3}$.
3. In the interval $\left(1 / 4^{2}, 1 / 4\right], y$ is 1 , its length is $1 / 4-1 / 4^{2}$. In the interval $\left(1 / 4^{4}, 1 / 4^{3}\right], y$ is 3 , its length is $1 / 4^{3}-1 / 4^{4}$. Continuing the pattern, the desired sum is $1 / 4-1 / 4^{2}+1 / 4^{3}-1 / 4^{4}+\cdots$, an infinite geometric series with sum $1 / 5$.

Value-finding

1. Letting $x=0$, we see $f(0)=2$. Similarly, we see $f(7)=383$. The difference is 381 .
2. We set $f(a)=1$ and subtract $f(1)$ on both sides. We see that $f(b)^{2}=1$ for all b. Thus $f(1)-f(-1)$ can be anything in $\{-2,0,2\}$.
3. We substitute $x=0$ and $x=3$ to get the system of equations $2 f(0)-2 f(3)=-18,-f(3)-2 f(0)=-30$. Solving, we get $f(0)=7$.

Cauchy functional equation

Note: if we have $f(x+y)=f(x)+f(y)$, the solution from $\mathbb{Q} \rightarrow \mathbb{R}$ is $f(x)=k x$. Similarly, the solution to $f(x+y)=f(x) f(y)$ is $f(x)=k^{x}$ and the solution to $f(x y)=f(x)+f(y)$ is $f(x)=\log _{k} x$.

1. Letting $y=0$ in the second equation and cancelling $f(0)$ on both sides yields $f(x)=0$ for all x. Thus $f\left(\pi^{2013}\right)=0$.
2. As per the note, the solution is $f(x)=k x$. We see that $k=3 / 2$ and thus $f(2009)=3013.5$.
3. As per the note, the solution is $f(x)=k^{x}$. We see that $k=5$ and $3 f(-2)=3 / 25$.

Other functional equations

1. Letting $x=y=0$ gives $f(0)=1 / 2009$. Letting $x=y$ gives $f(x)= \pm 1 / 2009$. The negative case fails, thus $f(\sqrt{2009})=1 / 2009$.
2. Let $x=0$ to get $f(-1)=f(y)-2 y-2$. Let $y=0$ to get $f(-1)=-1$. Equating gives us $f(y)=2 y+1$ for all y.
3. Let $y=0$ to get $f(0)=0$. Let $x=0$ to get f is odd. Switch x and y and equate to the original, use $f(y-x)=-f(x-y)$; rearrange to get

$$
f(x+y) /(x+y)=f(x-y) /(x-y)
$$

Thus $f(a) / a$ is a constant k for all a, and $f(a)=k a$. We have $k=3 / 5$ and thus $f(2015)=1209$.
4. Let $g(x)=(x+2009) /(x-1)$. The given is $x+f(x)+2 f(g(x))=2010$. Replace x with $g(x)$ to get $g(x)+f(g(x))+2 f(x)=2010$. Solving, $f(x)=\frac{x^{2}+2007 x-6028}{3 x-3}$.
5. Let $f(0)=a$, set $x=0$ to get $f(a)=1$. Set $x=a$ to get $f(1)=1-a$, set $x=1$ to get $f(1-a)=a$. Set $x=1-a$ to get $f(a)=1-a+a^{2}$. We get either $a=0,1$, either of which make a contradiction. Thus no f exists.

