VCSMS PRIME

Session 1: Algebra 1 compiled by Carl Joshua Quines September 21, 2016

Domain and range

- 1. Notice that $x^2 4x + 1 = (x 2)^2 3$. The minimum is thus 2^{-3} and it is unbounded, the range is thus $[1/8, +\infty)$.
- 2. For the domain, $x^2 10x + 29 = (x 5)^2 + 4 \ge 4$, thus there is no restriction for the square root. The denominator cannot be 0, thus the radical cannot be 2/5, but this is impossible. The domain is $(-\infty, +\infty)$.

From above, the radical can be anything in $[2, +\infty)$. The maximum is when the radical is 2, giving 3/4. As the radical grows larger, it approaches 0. The range is (0, 3/4].

3. We have $25 - x^2 - y^2 \ge 0$, $|x| - y \ge 0$. The first is a circle with radius 5, the second is an absolute value function. The intersection is a sector with angle 270°, which has area $75\pi/4$.

4.
$$\lfloor x^2 - x - 2 \rfloor$$
 will be 0 if $0 \le x^2 - x - 2 < 1$. Solving yields $(\frac{1 - \sqrt{13}}{2}, -1] \cup [2, \frac{1 + \sqrt{13}}{2})$.

- 5. For f, as x approaches $-\infty$, 3^{-x} approaches $+\infty$ and the fraction approaches 2. As x approaches $+\infty, 3^{-x}$ approaches 0 and the fraction approaches 1/2. The range of f is thus $(-\infty, 1/2) \cup (2, \infty)$. Similarly the range of g is (-3, 4).
- 6. Solving for y yields $y = \frac{12e^x + 3}{3e^x + 1}$. By a similar argument as number 5, m = 3.
- 7. We have $f^4(x) > 0, f^3(x) > 1, f^2(x) > e, f(x) > e^e, x > e^{e^e}$. The domain is $(e^{e^e}, +\infty)$.
- 8. When x = a, b, c, f is 1. Since the degree of f is at most 2, and we have three distinct values of f, by interpolating, f(x) = 1. The range is $\{1\}$.

Logarithms

- 1. The sum is $1 \times 3 + \cdots + 20 \times 22$. This is equal to $(2^2 1) + \cdots + (21^2 1)$, which we can evaluate using the sum of squares formula as 3290.
- 2. Raising both sides to the base, we have $4 = (x^2 3x)^2$. Thus $x^2 3x = +2, -2$. We see that the negative case is impossible after substituting in the original equation. Thus $x^2 3x = 2$, which has two real roots.
- 3. We have $\left|\log_{\frac{1}{2}}|x|\right| 1 = 0$. Thus $\log_{\frac{1}{2}}|x| = \pm 1$, or $|x| = \frac{1}{2}$, 2. This has four real solutions, thus the graph crosses the x-axis four times.
- 4. After noting that x > 0 from the $\log_{2014} x$ in the exponent, taking the base-x logarithm of both sides yields $\log_x \sqrt{2014} + \log_{2014} x = 2014$. Substituting $u = \log_{2014} x$ and using the fact that $\log_x \sqrt{2014} = \frac{1}{2u}$, we see that $2u^2 4028u + 1 = 0$. Suppose that the roots of this are $u_1 = \log_{2014} x_1, u_2 = \log_{2014} x_2$ and thus by Vieta's and the product rule for logarithms we have $u_1 + u_2 = 2014 = \log_{2014}(x_1x_2)$. The product of the roots x_1 and x_2 to the original equation is thus 2014^{2014} which has units digit 6.
- 5. Multiplying the three given equations yields $(xyz)^2 = 10^{a+b+c}$, taking the logarithms of both sides yields $\log x + \log y + \log z = \frac{a+b+c}{2}$.

6. Note that
$$a = \log_{14} 16 = 4 \log_{14} 2$$
. Thus $\log_{14} 2 = a/4$. Thus $\log_8 14 = \frac{1}{\log_{14} 8} = \frac{1}{3 \log_{14} 2} = \frac{4}{3a}$.

Exponents

- 1. a) Note that $4^3 = 2^6$. Equating exponents, $2^x = 6$, and thus $x = \log_2 6$.
 - b) We see that x = 1 is a solution. Equating exponents yields x = 2. Thus x = 1, 2.
 - c) Equating exponents, $x^x = x^2$. From b, we have x = 1, 2. Thus x = 1, 2.
 - d) Again, we see that x = 1 is a solution. Equating exponents yields $x = \pm \sqrt[2010]{2010}$. Thus $x = 1, \pm \sqrt[2010]{2010}$.
- 2. Taking hundredth roots yields $n^3 > 3^5 = 243$. The smallest integral n that satisfies this is 7.
- 3. First, compare 11^{16} and $25^{12} = 5^{24}$ by taking the eighth root, reducing the comparison to 11^2 and 5^3 . It is clear that the former is lesser. Compare $25^{12} = 5^{24}$ and $16^{14} = 2^{56}$ by taking the eighth root, reducing the comparison to 5^3 and 2^7 . It is clear that the former is lesser. From least to greatest, we have $11^{16}, 25^{12}, 16^{14}$.
- 4. We factor the LHS as $(9^{2x-1})(9-1) = 8\sqrt{3}$, by equating exponents, we have $2x 1 = \frac{1}{2}$. Thus $(2x-1)^{2x} = \sqrt{2}/8$.

More logarithms

- 1. We see that $2^3 < 3^2$, thus $2 < 3^{2/3}, \log_3 2 < 2/3$. Since $625^2 < 75^3, 625^{2/3} < 75, 2/3 < \log_{625} 75$. Finally, we see that $\log_{625} 75 = \frac{\log_5 75}{4} < \log_5 3$. Thus from least to greatest, we have $\log_3 2, 2/3, \log_{625} 75, \log_5 3$.
- 2. After solving, we see x = 1/2. The infinite geometric series evaluates to 2.
- 3. Simplifying, we see that this is equivalent to $1 \log_a b + 1 \log_b a$. The minimum value of $\log_a b + \log_b a$ is 2 by AM-GM, thus the maximum value of the expression is 0.
- 4. Simplifying, we see $5^k 2^m = 400^n = (5^2 2^4)^n$. We have k = 2n, m = 4n. Since the greatest common divisor must be 1, we have n = 1, k = 2, m = 4, k + m + n = 7.
- 5. After trial and error, we find m = 5 works.
- 6. Let $u = 5^{\frac{1}{2x}}$. Simplifying, we have $u^2 + 125 < 30u$ which factors into (u-5)(u-25) < 0, thus $u \in (5, 25)$ and $x \in (1/4, 1/2)$.
- 7. We have $x \ge 2(x-1)$, thus $x \le 2$. But from the argument of $\log(x-1)$ we have x > 1. Combining, we see all $x \in (1,2]$ work.

Floor, ceiling, fractional

- 1. The equation is $2\lfloor x \rfloor = \lfloor x \rfloor + \{x\} + 2\{x\}$, which is $\lfloor x \rfloor = 3\{x\}$. As $\{x\} \in [0, 1)$, the only values for which $3\{x\}$ is an integer is $\{x\} \in \{0, 1/3, 2/3\}$. These give solutions x = 0, 4/3, 8/3.
- 2. Note that x must be nonnegative. We do casework on $\lfloor x \rfloor$. When $\lfloor x \rfloor = 0$, clearly x = 0. When $\lfloor x \rfloor = 1$ then 2x(x-1) = 1, which has solution $\frac{1+\sqrt{3}}{2}$. When $\lfloor x \rfloor = 2$, then 2x(x-2) = 4, which has solution $1 + \sqrt{3}$. If $\lfloor x \rfloor \ge 3$, then examining the discriminant reveals there is no solution. Thus $x = 0, \frac{1+\sqrt{3}}{2}, 1+\sqrt{3}$.
- 3. In the interval $(1/4^2, 1/4]$, y is 1, its length is $1/4 1/4^2$. In the interval $(1/4^4, 1/4^3]$, y is 3, its length is $1/4^3 1/4^4$. Continuing the pattern, the desired sum is $1/4 1/4^2 + 1/4^3 1/4^4 + \cdots$, an infinite geometric series with sum 1/5.

Value-finding

- 1. Letting x = 0, we see f(0) = 2. Similarly, we see f(7) = 383. The difference is 381.
- 2. We set f(a) = 1 and subtract f(1) on both sides. We see that $f(b)^2 = 1$ for all b. Thus f(1) f(-1) can be anything in $\{-2, 0, 2\}$.
- 3. We substitute x = 0 and x = 3 to get the system of equations 2f(0) 2f(3) = -18, -f(3) 2f(0) = -30. Solving, we get f(0) = 7.

Cauchy functional equation

Note: if we have f(x+y) = f(x) + f(y), the solution from $\mathbb{Q} \to \mathbb{R}$ is f(x) = kx. Similarly, the solution to f(x+y) = f(x)f(y) is $f(x) = k^x$ and the solution to f(xy) = f(x) + f(y) is $f(x) = \log_k x$.

- 1. Letting y = 0 in the second equation and cancelling f(0) on both sides yields f(x) = 0 for all x. Thus $f(\pi^{2013}) = 0$.
- 2. As per the note, the solution is f(x) = kx. We see that k = 3/2 and thus f(2009) = 3013.5.
- 3. As per the note, the solution is $f(x) = k^x$. We see that k = 5 and 3f(-2) = 3/25.

Other functional equations

- 1. Letting x = y = 0 gives f(0) = 1/2009. Letting x = y gives $f(x) = \pm 1/2009$. The negative case fails, thus $f(\sqrt{2009}) = 1/2009$.
- 2. Let x = 0 to get f(-1) = f(y) 2y 2. Let y = 0 to get f(-1) = -1. Equating gives us f(y) = 2y + 1 for all y.
- 3. Let y = 0 to get f(0) = 0. Let x = 0 to get f is odd. Switch x and y and equate to the original, use f(y-x) = -f(x-y); rearrange to get

$$f(x+y)/(x+y) = f(x-y)/(x-y)$$

Thus f(a)/a is a constant k for all a, and f(a) = ka. We have k = 3/5 and thus f(2015) = 1209.

- 4. Let g(x) = (x + 2009)/(x 1). The given is x + f(x) + 2f(g(x)) = 2010. Replace x with g(x) to get g(x) + f(g(x)) + 2f(x) = 2010. Solving, $f(x) = \frac{x^2 + 2007x 6028}{3x 3}$.
- 5. Let f(0) = a, set x = 0 to get f(a) = 1. Set x = a to get f(1) = 1 a, set x = 1 to get f(1 a) = a. Set x = 1 - a to get $f(a) = 1 - a + a^2$. We get either a = 0, 1, either of which make a contradiction. Thus no f exists.