VCSMS PRIME

Session 2: Trigonometry
compiled by Carl Joshua Quines
September 23, 2016

Circular functions

1. (11QI8) Find the sum $\cos 1^{\circ}+\cos 3^{\circ}+\cos 5^{\circ}+\cdots+\cos 177^{\circ}+\cos 179^{\circ}$.
2. (13QI15) Find the value of $\sin \theta$ if the terminal side of θ lies on $5 y-3 x=0$ and θ is in the first quadrant.
3. (11AI14) The line from the origin to the point $\left(1, \tan 75^{\circ}\right)$ intersects the unit circle at P. Find the slope of the tangent line to the circle at P.
4. (11AI11) Find the sum of the coefficients of the polynomial $\cos \left(2 \cos ^{-1}\left(1-x^{2}\right)\right)$.

Identities

1. (11QII5) Find the value of $\cos 15^{\circ}$.
2. (14QII6) Evaluate $\log _{2} \sin (\pi / 8)+\log _{2} \cos (15 \pi / 8)$.
3. (16NE9) If $\tan x+\tan y=5$ and $\tan (x+y)=10$, find $\cot ^{2} x+\cot ^{2} y$.
4. (15AI4) Find the numerical value of $\left(1-\cot 37^{\circ}\right)\left(1-\cot 8^{\circ}\right)$.
5. (16NA1) Find the value of $\cot \left(\cot ^{-1} 2+\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5\right)$.
6. (16AI6) Evaluate $\prod_{\theta=1}^{89}\left(\tan \theta^{\circ} \cos 1^{\circ}+\sin 1^{\circ}\right)$.
7. (13AI14) Given that $\tan \alpha+\cot \alpha=4$, find $\sqrt{\sec ^{2} \alpha+\csc ^{2} \alpha-\frac{1}{2} \sec \alpha \csc \alpha}$.

Equations

1. (13QI11) If $2 \sin (3 x)=a \cos (3 x+c)$, find all values of $a c$.
2. (13QI10) How many solutions has $\sin 2 \theta-\cos 2 \theta=\sqrt{6} / 2$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$?
3. (10NA9) If $0<\theta<\pi / 2$ and $1+\sin \theta=2 \cos \theta$, determine the numerical value of $\sin \theta$.
4. (13NE13) Find the solution set of the equation $\frac{\sec ^{2} x-6 \tan x+7}{\sec ^{2} x-5}=2$.
5. (10ND4) Find the only value of x in $(-\pi / 2,0)$ that satisfies $\frac{\sqrt{3}}{\sin x}+\frac{1}{\cos x}=4$.
6. (16AI13) Find all real numbers a and b so that for all real numbers x,

$$
2 \cos ^{2}\left(x+\frac{b}{2}\right)-2 \sin \left(a x-\frac{\pi}{2}\right) \cos \left(a x-\frac{\pi}{2}\right)=1
$$

7. (14AI12) Suppose $\alpha, \beta \in(0, \pi / 2)$. If $\tan \beta=\frac{\cot \alpha-1}{\cot \alpha+1}$, find $\alpha+\beta$.
8. (14ND3) Find all $0 \leq \theta \leq 2 \pi$ satisfying $\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \cos 8 \theta}}}=\cos \theta$.

Triangle laws

1. (16NE5) In right triangle $A B C, \angle A C B=90^{\circ}$ and $A C=B C=1$. Point D is on $A B$ such that $\angle D C B=30^{\circ}$. Find the area of $\triangle A D C$.
2. (13NE11) In $\triangle A B C, \angle A=60^{\circ}, \angle B=45^{\circ}$, and $A C=\sqrt{2}$. Find the area of the triangle.
3. (10QIII5) Let M be the midpoint of side $B C$ of triangle $A B C$. Suppose that $A B=4, A M=1$. Determine the smallest possible measure of $\angle B A C$.
4. (13AI9) Consider an acute triangle with angles α, β, γ opposite the sides a, b, c respectively. If $\sin \alpha=\frac{3}{5}$ and $\cos \beta=\frac{5}{13}$, evaluate $\frac{a^{2}+b^{2}-c^{2}}{a b}$.
5. (15AII3) Points A, M, N and B are collinear, in that order, and $A M=4, M N=2, N B=3$. If point C is not collinear with these four points, and $A C=6$, prove that $C N$ bisects $\angle B C M$.
6. (11AII2) Denote by a, b, c the sides of a triangle opposite angles α, β, γ, respectively. If $\alpha=60^{\circ}$, prove that $a^{2}=\frac{a^{3}+b^{3}+c^{3}}{a+b+c}$.
