VCSMS PRIME

Session 2: Trigonometry

compiled by Carl Joshua Quines
September 23, 2016

Circular functions

1. As $\cos x=-\cos \left(180^{\circ}-x\right)$, the sum is 0 .
2. Rearranging, $x / y=5 / 3=\tan \theta$. Thus $\sin \theta=5 / \sqrt{34}$.
3. The line is the terminal side of an angle θ. Note that $\tan \theta=\tan 75^{\circ}$, so the angle is 75°. The tangent line to the unit circle makes an angle of 165° with the origin, so its slope is $\tan 165^{\circ}=-2+\sqrt{3}$.
4. We let $x=1$ to get the sum of the coefficients as $\cos \left(2 \cos ^{-1}(0)\right)=-1$.

Identities

1. The half-angle identity gives $\cos 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}$.
2. We wish to evaluate $\log _{2} \sin (\pi / 8) \cos (15 \pi / 8)$. By the product-to-sum identity, this is $\log _{2}(1 / 2)(\sin (2 \pi)+$ $\sin (7 \pi / 4))=-3 / 2$.
3. We use the fact that $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$ to get $\tan x \tan y=\frac{1}{2}$. Then $\cot ^{2} x+\cot ^{2} y=$ $\frac{(\tan x+\tan y)^{2}-2 \tan x \tan y}{\tan ^{2} x \tan ^{2} y}=96$.
4. Note that $\cot \left(37^{\circ}+8^{\circ}\right)=\frac{\cot 37^{\circ} \cot 8^{\circ}-1}{\cot 37^{\circ}+\cot 8^{\circ}}=1$, so $\cot 37^{\circ} \cot 8^{\circ}-1=\cot 37^{\circ}+\cot 8^{\circ}$. This rearranges to $\left(1-\cot 37^{\circ}\right)\left(1-\cot 8^{\circ}\right)=2$.
5. We see $\cot \left(\cot ^{-1} 2+\cot ^{-1} 3\right)=\frac{2 \cdot 3-1}{2+3}=1$. Similarly, $\cot \left(\cot ^{-1} 4+\cot ^{-1} 5\right)=19 / 9$. Finally, $\cot \left(\cot ^{-1} 1+\cot ^{-1} 19 / 9\right)=5 / 14$.
6. Note that $\tan \theta^{\circ} \cos 1^{\circ}+\sin 1^{\circ}=\frac{\sin \theta^{\circ} \cos 1^{\circ}+\sin 1^{\circ} \cos \theta^{\circ}}{\cos \theta^{\circ}}=\frac{\sin \left(\theta^{\circ}+1^{\circ}\right)}{\cos \theta^{\circ}}$. The product telescopes using cofunctions and the result is $\frac{1}{\sin 1^{\circ}}=\csc 1^{\circ}$.
7. Interpret this with the unit circle: there is a right triangle with legs of length $\sec \alpha$ and $\csc \alpha$, and its hypotenuse is $\tan \alpha+\cot \alpha$. The area of the triangle is equal to half the product of its legs, or $\frac{1}{2} \sec \alpha \csc \alpha$. It is also equal to half the product of the hypotenuse and the altitude to the hypotenuse, or $\frac{1}{2}(\tan \alpha+\cot \alpha)$. The answer is $\sqrt{14}$.

Equations

1. (The equation holds for all x.) By phase shift, $2 \sin 3 x=2 \cos \left(3 x-\frac{\pi}{2}+2 k \pi\right)=-2 \cos \left(3 x+\frac{\pi}{2}+2 k \pi\right)$ for some $k \in \mathbb{Z}$. The product ac in both cases is $(4 k-1) \pi$.
2. Square both sides to yield $1-2 \sin 2 \theta \cos 2 \theta=1-\sin 4 \theta=3 / 2$, giving $\sin 4 \theta=-1 / 2$. Since $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, it follows $4 \theta \in(-2 \pi, 2 \pi)$. In this interval, $\sin 4 \theta$ becomes $-1 / 2$ four times, so the equation has four solutions.
3. Square both sides and substitute $\cos ^{2} \theta=1-\sin ^{2} \theta$ to yield $5 \sin ^{2} \theta+2 \sin \theta-3=(5 \sin \theta-3)(\sin \theta+1)=0$. Either $\sin \theta=3 / 5$ or $\sin \theta=-1$, but we can eliminate the latter as $0<\theta<\pi / 2$. Thus $\sin \theta=3 / 5$.
4. Substituting $\sec ^{2} x=\tan ^{2} x+1$ and simplifying gives the quadratic equation $\tan ^{2} x+6 \tan x-16=$ $(\tan x+8)(\tan x-2)=0$, thus $x \in\left\{\tan ^{-1} 2 \pm k \pi, \tan ^{-1}(-8) \pm k \pi \mid k \in \mathbb{Z}\right\}$.
5. Transpose $\frac{1}{\cos x}$ and square both sides. Substitute $\sin ^{2} x=1-\cos ^{2} x$ and then $\cos x=u$ to get the equation $\frac{3}{1-u^{2}}=16+\frac{1}{u^{2}}-\frac{8}{u}$. Clear the denominators to get $16 u^{4}-8 u^{3}-12 u^{2}+8 u-1=0$. By inspection, $u=\frac{1}{2}$ works; dividing through gives $8 u^{3}-6 u+1=0$. This reminds one of the triple angle formula $\cos 3 x=4 \cos ^{3} x-3 \cos x$. We rewrite the equation as $4 u^{3}-3 u=-\frac{1}{2}=\cos 3 x$. Keeping in mind $x \in(-\pi / 2,0)$, we let $3 x=-\frac{4 \pi}{3}$ and get $x=-\frac{4 \pi}{9}$.
6. Transpose the first term of the left hand side, use the double angle formulae, and then use cofunctions to get $\cos (2 x+b)=\sin (2 a x-\pi)=\cos (3 \pi / 2-2 a x)$. We can see that there are two cases: when $a=1$ and $b=\pi / 2+2 k \pi, k \in \mathbb{Z}$, or when $a=-1$ and $b=3 \pi / 2+2 k \pi, k \in \mathbb{Z}$.
7. Substitute $\cot \alpha=\frac{1}{\tan \alpha}$ and simplify to get $\tan \beta=\frac{1-\tan \alpha}{1+\tan \alpha}$. Cross-multiply and rearrange the terms to get $\tan \alpha+\tan \beta=1-\tan \alpha \tan \beta$, which is $\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\tan (\alpha+\beta)=1$, so $\alpha+\beta=\pi / 4$.
8. Note $\cos 8 \theta=2 \cos ^{2} 4 \theta-1$, so $\frac{1}{2}+\frac{1}{2} \cos 8 \theta=\cos ^{2} 4 \theta$. Taking the positive root and repeating gives $\cos \theta$. Thus $\cos 4 \theta, \cos 2 \theta$ and $\cos \theta$ must all be at least 0 . This is when $\theta \in\left[0, \frac{\pi}{8}\right] \cup\left[\frac{15 \pi}{8}, 2 \pi\right]$.

Triangle laws

1. This is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, thus $\angle A C D=60^{\circ}$ and $\angle C D A=75^{\circ}$. By the sine law, $\frac{C D}{\sin 45^{\circ}}=$ $\frac{A C}{\sin 75^{\circ}}$, so $C D=\sqrt{3}-1$. The altitude of $A D C$ with respect to the base $A C$ has length $C D \sin 60^{\circ}=$ $\frac{1}{2}(3-\sqrt{3})$, thus the area is $\frac{1}{4}(3-\sqrt{3})$.
2. There is a solution with the sine law, but the synthetic solution involves letting D be the foot of the altitude from C to $A B$, making $A D C$ a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and $B C D$ a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. $A D$ has length $\frac{\sqrt{2}}{2}$ and $C D$ and $B D$ both have length $\frac{\sqrt{6}}{2}$. The area is then $\frac{3+\sqrt{3}}{2}$.
3. Let $B M=M C=x$. By Apollonius', $A C=\sqrt{2 x^{2}-14}$. We use the cosine law to get $\cos \angle B A C=$ $\frac{4^{2}-\left(\sqrt{2 x^{2}-14}\right)^{2}-(2 x)^{2}}{2 \cdot 4 \sqrt{2 x^{2}-14}}=\frac{1-x^{2}}{4 \sqrt{2 x^{2}-14}}$. We want to maximize this, and upon seeing the numerator being negative, we are inspired to take the negative and minimize using AM-GM. Then $\cos \angle B A C=-\frac{1}{4 \sqrt{2}}\left(\frac{x^{2}-1}{\sqrt{x^{2}-7}}\right)=-\frac{1}{4 \sqrt{2}}\left(\frac{x^{2}-7}{\sqrt{x^{2}-7}}+\frac{6}{\sqrt{x^{2}-7}}\right)=-\frac{1}{4 \sqrt{2}}\left(\sqrt{x^{2}-7}+\frac{6}{\sqrt{x^{2}-7}}\right) \leq$ $-\frac{1}{4 \sqrt{2}} \cdot 2 \sqrt{6}=-\frac{\sqrt{3}}{2}$ by AM-GM. Thus $\angle B A C \geq 150^{\circ}$.
4. By the cosine law, $\frac{a^{2}+b^{2}-c^{2}}{a b}=2 \cos \gamma$. Since $2 \cos \gamma=2 \cos (\pi-\alpha-\beta)=-2 \cos (\alpha+\beta)$, we can use the sum formula for cosine to get the answer as $\frac{32}{65}$.
5. There is a straightforward solution with the sine law, but we will proceed synthetically. Let A^{\prime} be the point on the line $A B$ that is not N such that $A^{\prime} A=6$. Then $A A^{\prime}=A C=A N=6$, thus A is the center of a circle with diameter $A^{\prime} N$ containing point C, and $\angle A^{\prime} C N=90^{\circ}$. Draw a line through N parallel
to $C A^{\prime}$ and let it intersect lines $C M$ and $C B$ at P and Q respectively. Since $\triangle A^{\prime} M C \sim \triangle P M N$ and $\triangle A^{\prime} B C \sim \triangle N B Q$, we have $P N=\frac{M N}{M A^{\prime}} \cdot C A^{\prime}$ and $Q N=\frac{B N}{B A^{\prime}} \cdot C A^{\prime}$, and substituting the given shows that $P N=Q N$, which implies $\triangle C N P \cong \triangle C N Q$, which implies $\angle M C N=\angle N C B$.
6. By the cosine law, $a^{2}=b^{2}+c^{2}-b c$. Factoring, $b^{3}+c^{3}=(b+c)\left(b^{2}+c^{2}-b c\right)=(b+c) a^{2}$. Add a^{3} to both sides and rearrange to get the desired equality.
