VCSMS PRIME

Session 2: Trigonometry compiled by Carl Joshua Quines September 23, 2016

Circular functions

- 1. As $\cos x = -\cos(180^\circ x)$, the sum is 0.
- 2. Rearranging, $x/y = 5/3 = \tan \theta$. Thus $\sin \theta = 5/\sqrt{34}$.
- 3. The line is the terminal side of an angle θ . Note that $\tan \theta = \tan 75^{\circ}$, so the angle is 75°. The tangent line to the unit circle makes an angle of 165° with the origin, so its slope is $\tan 165^{\circ} = -2 + \sqrt{3}$.
- 4. We let x = 1 to get the sum of the coefficients as $\cos(2\cos^{-1}(0)) = -1$.

Identities

- 1. The half-angle identity gives $\cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$.
- 2. We wish to evaluate $\log_2 \sin(\pi/8) \cos(15\pi/8)$. By the product-to-sum identity, this is $\log_2(1/2)(\sin(2\pi) + \sin(7\pi/4)) = -3/2$.
- 3. We use the fact that $\tan(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$ to get $\tan x \tan y = \frac{1}{2}$. Then $\cot^2 x + \cot^2 y = \frac{(\tan x + \tan y)^2 2\tan x \tan y}{\tan^2 x \tan^2 y} = 96.$
- 4. Note that $\cot(37^\circ + 8^\circ) = \frac{\cot 37^\circ \cot 8^\circ 1}{\cot 37^\circ + \cot 8^\circ} = 1$, so $\cot 37^\circ \cot 8^\circ 1 = \cot 37^\circ + \cot 8^\circ$. This rearranges to $(1 \cot 37^\circ)(1 \cot 8^\circ) = 2$.
- 5. We see $\cot(\cot^{-1}2 + \cot^{-1}3) = \frac{2 \cdot 3 1}{2 + 3} = 1$. Similarly, $\cot(\cot^{-1}4 + \cot^{-1}5) = 19/9$. Finally, $\cot(\cot^{-1}1 + \cot^{-1}19/9) = 5/14$.
- 6. Note that $\tan \theta^{\circ} \cos 1^{\circ} + \sin 1^{\circ} = \frac{\sin \theta^{\circ} \cos 1^{\circ} + \sin 1^{\circ} \cos \theta^{\circ}}{\cos \theta^{\circ}} = \frac{\sin(\theta^{\circ} + 1^{\circ})}{\cos \theta^{\circ}}$. The product telescopes using cofunctions and the result is $\frac{1}{\sin 1^{\circ}} = \csc 1^{\circ}$.
- 7. Interpret this with the unit circle: there is a right triangle with legs of length $\sec \alpha$ and $\csc \alpha$, and its hypotenuse is $\tan \alpha + \cot \alpha$. The area of the triangle is equal to half the product of its legs, or $\frac{1}{2} \sec \alpha \csc \alpha$. It is also equal to half the product of the hypotenuse and the altitude to the hypotenuse, or $\frac{1}{2}(\tan \alpha + \cot \alpha)$. The answer is $\sqrt{14}$.

Equations

- 1. (The equation holds for all x.) By phase shift, $2\sin 3x = 2\cos\left(3x \frac{\pi}{2} + 2k\pi\right) = -2\cos\left(3x + \frac{\pi}{2} + 2k\pi\right)$ for some $k \in \mathbb{Z}$. The product ac in both cases is $(4k-1)\pi$.
- 2. Square both sides to yield $1-2\sin 2\theta \cos 2\theta = 1-\sin 4\theta = 3/2$, giving $\sin 4\theta = -1/2$. Since $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, it follows $4\theta \in (-2\pi, 2\pi)$. In this interval, $\sin 4\theta$ becomes -1/2 four times, so the equation has four solutions.
- 3. Square both sides and substitute $\cos^2 \theta = 1 \sin^2 \theta$ to yield $5 \sin^2 \theta + 2 \sin \theta 3 = (5 \sin \theta 3)(\sin \theta + 1) = 0$. Either $\sin \theta = 3/5$ or $\sin \theta = -1$, but we can eliminate the latter as $0 < \theta < \pi/2$. Thus $\sin \theta = 3/5$.

- 4. Substituting $\sec^2 x = \tan^2 x + 1$ and simplifying gives the quadratic equation $\tan^2 x + 6 \tan x 16 = (\tan x + 8)(\tan x 2) = 0$, thus $x \in \{\tan^{-1} 2 \pm k\pi, \tan^{-1}(-8) \pm k\pi | k \in \mathbb{Z}\}$.
- 5. Transpose $\frac{1}{\cos x}$ and square both sides. Substitute $\sin^2 x = 1 \cos^2 x$ and then $\cos x = u$ to get the equation $\frac{3}{1-u^2} = 16 + \frac{1}{u^2} \frac{8}{u}$. Clear the denominators to get $16u^4 8u^3 12u^2 + 8u 1 = 0$. By inspection, $u = \frac{1}{2}$ works; dividing through gives $8u^3 - 6u + 1 = 0$. This reminds one of the triple angle formula $\cos 3x = 4\cos^3 x - 3\cos x$. We rewrite the equation as $4u^3 - 3u = -\frac{1}{2} = \cos 3x$. Keeping in mind $x \in (-\pi/2, 0)$, we let $3x = -\frac{4\pi}{3}$ and get $x = -\frac{4\pi}{9}$.
- 6. Transpose the first term of the left hand side, use the double angle formulae, and then use cofunctions to get $\cos(2x+b) = \sin(2ax-\pi) = \cos(3\pi/2 2ax)$. We can see that there are two cases: when a = 1 and $b = \pi/2 + 2k\pi$, $k \in \mathbb{Z}$, or when a = -1 and $b = 3\pi/2 + 2k\pi$, $k \in \mathbb{Z}$.
- 7. Substitute $\cot \alpha = \frac{1}{\tan \alpha}$ and simplify to get $\tan \beta = \frac{1 \tan \alpha}{1 + \tan \alpha}$. Cross-multiply and rearrange the terms to get $\tan \alpha + \tan \beta = 1 \tan \alpha \tan \beta$, which is $\frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta} = \tan(\alpha + \beta) = 1$, so $\alpha + \beta = \pi/4$.
- 8. Note $\cos 8\theta = 2\cos^2 4\theta 1$, so $\frac{1}{2} + \frac{1}{2}\cos 8\theta = \cos^2 4\theta$. Taking the positive root and repeating gives $\cos \theta$. Thus $\cos 4\theta$, $\cos 2\theta$ and $\cos \theta$ must all be at least 0. This is when $\theta \in \left[0, \frac{\pi}{8}\right] \cup \left[\frac{15\pi}{8}, 2\pi\right]$.

Triangle laws

- 1. This is a $45^{\circ} 45^{\circ} 90^{\circ}$ triangle, thus $\angle ACD = 60^{\circ}$ and $\angle CDA = 75^{\circ}$. By the sine law, $\frac{CD}{\sin 45^{\circ}} = \frac{AC}{\sin 75^{\circ}}$, so $CD = \sqrt{3} 1$. The altitude of ADC with respect to the base AC has length $CD \sin 60^{\circ} = \frac{1}{2}(3-\sqrt{3})$, thus the area is $\frac{1}{4}(3-\sqrt{3})$.
- 2. There is a solution with the sine law, but the synthetic solution involves letting D be the foot of the altitude from C to AB, making ADC a $30^{\circ} 60^{\circ} 90^{\circ}$ triangle and BCD a $45^{\circ} 45^{\circ} 90^{\circ}$ triangle. AD has length $\frac{\sqrt{2}}{2}$ and CD and BD both have length $\frac{\sqrt{6}}{2}$. The area is then $\frac{3+\sqrt{3}}{2}$.
- 3. Let BM = MC = x. By Apollonius', $AC = \sqrt{2x^2 14}$. We use the cosine law to get $\cos \angle BAC = \frac{4^2 (\sqrt{2x^2 14})^2 (2x)^2}{2 \cdot 4\sqrt{2x^2 14}} = \frac{1 x^2}{4\sqrt{2x^2 14}}$. We want to maximize this, and upon seeing the numerator being negative, we are inspired to take the negative and minimize using AM-GM. Then $\cos \angle BAC = -\frac{1}{4\sqrt{2}} \left(\frac{x^2 1}{\sqrt{x^2 7}}\right) = -\frac{1}{4\sqrt{2}} \left(\frac{x^2 7}{\sqrt{x^2 7}} + \frac{6}{\sqrt{x^2 7}}\right) = -\frac{1}{4\sqrt{2}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{4\sqrt{2}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{4\sqrt{2}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{4\sqrt{x^2 7}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{\sqrt{x^2 7}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{\sqrt{x^2 7}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{\sqrt{x^2 7}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1}{\sqrt{x^2 7}}\right) = -\frac{1}{\sqrt{x^2 7}} \left(\frac{\sqrt{x^2 7}}{\sqrt{x^2 7}} + \frac{1$
- 4. By the cosine law, $\frac{a^2 + b^2 c^2}{ab} = 2\cos\gamma$. Since $2\cos\gamma = 2\cos(\pi \alpha \beta) = -2\cos(\alpha + \beta)$, we can use the sum formula for cosine to get the answer as $\frac{32}{65}$.
- 5. There is a straightforward solution with the sine law, but we will proceed synthetically. Let A' be the point on the line AB that is not N such that A'A = 6. Then AA' = AC = AN = 6, thus A is the center of a circle with diameter A'N containing point C, and $\angle A'CN = 90^{\circ}$. Draw a line through N parallel

to CA' and let it intersect lines CM and CB at P and Q respectively. Since $\triangle A'MC \sim \triangle PMN$ and $\triangle A'BC \sim \triangle NBQ$, we have $PN = \frac{MN}{MA'} \cdot CA'$ and $QN = \frac{BN}{BA'} \cdot CA'$, and substituting the given shows that PN = QN, which implies $\triangle CNP \cong \triangle CNQ$, which implies $\angle MCN = \angle NCB$.

6. By the cosine law, $a^2 = b^2 + c^2 - bc$. Factoring, $b^3 + c^3 = (b+c)(b^2 + c^2 - bc) = (b+c)a^2$. Add a^3 to both sides and rearrange to get the desired equality.