VCSMS PRIME

Session 3: Number theory

compiled by Carl Joshua Quines
September 28, 2016

Ad hoc

1. (14QII8) How many trailing zeroes does 126 ! have when written in decimal notation?
2. (14AI7) What is the largest positive integer k such that 27 ! is divisible by 2^{k} ?
3. (14NE2) What is the smallest number of integers that need to be selected from $\{1,2, \ldots, 50\}$ to guarantee that two of the selected numbers are relatively prime?
4. (16QII4) How many positive integers n make the expression $7^{n}+7^{3}+2 \cdot 7^{2}$ a perfect square?
5. (11ND2) Find all positive integers n make the expression $2^{8}+2^{11}+2^{n}$ a perfect square.
6. (14NA7) What is the largest positive integer abcdef that can be formed from the digits $1,2,3,4,5,6$, each used exactly once, if $a b c d e f$ is divisible by 6 , $a b c d e$ is divisible by $5, a b c d$ is divisible by $4, a b c$ is divisible by 3 , and $a b$ is divisible by 2 ?
7. (14NA8) Let N be the smallest integer such that the quotient $\frac{10!}{N}$ is odd. If x and y are nonnegative numbers such that $2 x+y=N$, what is the maximum value of $x^{2} y^{2}$?
8. (16AI14) Let P be the product of all prime numbers less than 90 . Find the largest integer N so that for each $n \in\{2,3,4, \ldots, N\}$, the number $P+n$ has a prime factor less than 90 .

Factors

1. (16QI7) What is the fifth largest divisor of the number $2,015,000,000$?
2. (11NA9) What is the sum of all the even positive divisors of 1152 ?
3. (15AI1) What is the fourth smallest positive integer having exactly 4 positive integer divisors, including 1 and itself?
4. (13NE4) If $25 \cdot 9^{2 x}=15^{y}$ is an equality of integers, what is the value of x ?
5. (14QI14) How many factors of 7^{9999} are greater than $1,000,000$?
6. (13QI9) Determine the number of factors of $5^{x}+2 \cdot 5^{x+1}$.
7. (14AI10) Let p and q be positive integers such that $p q=2^{3} \cdot 5^{5} \cdot 7^{2} \cdot 11$ and $\frac{p}{q}=2 \cdot 5 \cdot 7^{2} \cdot 11$. Find the number of positive integer divisors of p.
8. (11QIII3) Let $n=2^{31} 3^{19}$. How many positive divisors of n^{2} are less than n but do not divide n ?
9. (16AI7) Find the sum of all the prime factors of $27,000,001$.
10. (9AI16) Give the prime factorization of $3^{20}+3^{19}-12$.
11. (16NA10) Let m be the product of all positive integral divisors of 360,000 . Suppose the prime factors of m are $p_{1}, p_{2}, \ldots, p_{k}$ for some positive integer k, and $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots \cdots p_{k}^{e_{k}}$, for some positive integers $e_{1}, e_{2}, \ldots, e_{k}$. Find $e_{1}+e_{2}+\cdots+e_{k}$.
12. (12N2) Let f be a polynomial function with integer coefficients and p be a prime number. Suppose that there are at least four distinct integers satisfying $f(x)=p$. Show that f does not have integer zeros.

Divisibility

1. (9QII7) How many values of n for which n and $\frac{n+3}{n-1}$ are both integers?
2. (15AI11) Find all integer values of n that will make $\frac{6 n^{3}-n^{2}+2 n+32}{3 n+1}$ an integer.
3. (15AII2) What is the greatest common factor of all integers of the form $p^{4}-1$, where p is a prime number greater than 5 ?
4. (14AII2) Let a, b, and c be positive integers such that $\frac{a \sqrt{2013}+b}{b \sqrt{2013}+c}$ is a rational number. Show that $\frac{a^{2}+b^{2}+c^{2}}{a+b+c}$ and $\frac{a^{3}-2 b^{3}+c^{3}}{a+b+c}$ are both integers.
5. (11ND3) How many positive integer pairs (x, y) are solutions to the equation $\frac{x y}{x+y}=1000$?
6. (16N2) Prove that the arithmetic sequence $5,11,17,23,29, \ldots$ contains infinitely many primes.

Diophantine equations

1. (9QI5) How many ordered pairs (x, y) of positive integers satisfy $2 x+5 y=100$?
2. (16NE12) Find all values of integers x and y satisfying $2^{3 x}+5^{3 y}=189$.
3. (13NE3) Find the values of a such that the system $x+2 y=a+6,2 x-y=25-2 a$ has a positive integer pair solution (x, y).
4. (14QII3) If $2 x y+y=43+2 x$ for positive integers x, y, find the largest value of $x+y$.
5. (14NE4) Find positive integers a, b, c such that $a+b+a b=15, b+c+b c=99$ and $c+a+c a=399$.
6. (11NA5) Find all nonnegative integer solutions of the system $5 x+7 y+5 z=37,6 x-y-10 z=3$.
7. (13NE8) If $7 x+4 y=5$ and x and y are integers, find the value of $\lfloor y / x\rfloor$.
8. (14NE9) How many triples (x, y, z) of positive integers satisfy the equation $x^{y^{z}} y^{z^{x}} z^{x^{y}}=3 x y z$?
9. (13N1) Determine, with proof, the least positive integer n for which there exists n distinct positive integers $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that

$$
\left(1-\frac{1}{x_{1}}\right)\left(1-\frac{1}{x_{2}}\right)\left(1-\frac{1}{x_{3}}\right) \cdots\left(1-\frac{1}{x_{n}}\right)=\frac{15}{2013} .
$$

Modulo

1. (11AI4) Find the last 2 nonzero digits of 16 !.
2. (16QI12) When $n+5$ is divided by 4 , the remainder is 3 . When $n+4$ is divided by 5 , the remainder is 5 . What is the remainder when $n+6$ is divided by 20 ?
3. (16 NE 7) Let n be a positive integer greater than 1 . If $2 n$ is divided by 3 , the remainder 2 . If $3 n$ is divided by 4 , the remainder is 3 . If $4 n$ is divided by 5 , the remainder is 4 . If $5 n$ is divided by 6 , the remainder is 5 . What is the least possible value of n ?
4. (14NA2) Find the remainder when $3!^{5!^{7!} \cdots^{2013!}}$ is divided by 11 .
5. (15AI17) What is the remainder when $16^{15}-8^{15}-4^{15}-2^{15}-1^{15}$ is divided by $96 ?$
6. (16AII1) The 6 -digit number $739 A B C$ is divisible by 7,8 , and 9 . What values can A, B, and C take?
7. (13N4) Let a, p, and q be positive integers with $p \leq q$. Prove that if one of the numbers a^{p} and a^{q} is divisible by p, then the other number must also be divisible by p.
