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Ad hoc

1. Each factor of 5 in 126! has a corresponding factor of 2 to produce a trailing zero, so we only need to count

the number of factors of 5. It is well-known to be, by Legendre’s formula,
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25 + 5 + 1 = 31.

2. By Legendre’s,
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= 13 + 6 + 3 + 1 = 23.

3. The answer is 26. Selecting all 25 even numbers has no two relatively prime; by Pigeonhole, selecting
26 will guarantee two consecutive numbers are selected, which are relatively prime.

4. It is easy to verify the cases n = 0, 1 to not produce perfect squares. Suppose n ≥ 2 and factor out 72

to produce 72
(
7n−2 + 9

)
. Since the first factor is a perfect square, so should the second.

Let m2 = 7n−2 + 9, so 7n−2 = m2 − 32 = (m− 3)(m + 3). Then both m− 3 and m + 3 are two powers
of 7 differing by 6, and since the difference between consecutive powers of 7 increases, the only possible
choice is m = 4, giving n = 3. The answer is 1.

5. Factoring out 28 gives 28
(
1 + 23

)
+ 2n = 2n + 2832. Let m2 = 2n + 2832, and transposing and using

the difference of two squares gives 2n = (m− 48)(m + 48). Then m− 48 and m + 48 are two powers of
two that differ by 96, the only possible pair being 32 and 128, giving n = 12.

6. Since abcde is divisible by 5, the only choice for e must be 5. There are only three even-numbered digits,
and b, e, f must all be even, so they match to b, e, f in some order. This leaves 1 and 3 for a and c.

Wishing to maximize, we try a = 3. Then c = 1, and the number so far is 3b1d5f . The condition of
ab being divisible by 2 is guaranteed, and so is the condition of abcdef being divisible by 6; we are
concerned about abc being divisible by 3 and abcd being divisible by 4. The first forces b = 2 and the
second forces d = 6, so the number is 321654.

7. The number N should be the largest power of 2 dividing 10!. By Legendre’s formula, the largest power

is
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⌋
= 5 + 2 + 1 = 8, so N = 28. Thus 2x + y = 28, and we maximize x2y2, or(

x(28 − 2x)
)2

. The base is a quadratic with vertex at x = 26, with value 213, and its square is thus 226

8. Since P is divisible by all prime numbers less than 90, for P + n to have a prime factor less than 90, so
must n. All n < 90 work for trivial reasons, and so do 90, . . . , 96, failing at n = 97 since it is a prime.
Thus the largest N is 96.

Factors

1. The fifth largest divisor corresponds to the fifth smallest divisor upon division. 2,015,000,000 =
2015 · 106 = 5 · 13 · 31 · 26 · 56, and its smallest divisors are, in order, 1, 2, 4, 5, 8. Dividing the number by
23 leaves 5 · 13 · 31 · 23 · 56 = 251,875,000.

2. The even positive divisors of 1152 are precisely the positive divisors of 1152÷ 2 = 576 times two, so it
remains to find the sum of all its divisors. Since 576 = 2632, the well-known formula for the sum of
divisors gives

(
1 + 2 + · · ·+ 26

) (
1 + 3 + 32

)
=

(
27 − 1

)
(13) = 1651, multiplying by 2 gives 3302.

3. By the formula for the number of divisors, the number must either be a product of two primes or the
cube of a prime. The first three numbers are 6, 8, 10, and the fourth is 14.
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4. The power of 5 in the LHS is 2, which means that the power of 5 in the RHS is 2 as well, so y = 2.
Then power of 3 in the RHS is 2, so the power of 3 in the LHS, 2x, should equal to 2. Thus x = 1.

5. The highest power of 7 less than one million is 77, so there are 8 factors smaller than a million. The
rest of the 10,000 factors are larger, so there are 9992 such factors.

6. Factoring out 5x gives 5x (1 + 2 · 5) = 5x11. The number of factors formula gives (x + 1)2 = 2x + 2
factors.

7. Multiplying the two equations and taking the square root gives p = 22 · 53 · 72 · 11, which has
(2 + 1)(3 + 1)(2 + 1)(1 + 1) = 72 divisors.

8. For each factor of n2 less than n, dividing through n2 gives a corresponding factor greater than n. Thus
the number of factors of n2, minus one to account for n, divided by 2, gives the number of its factors
less than n. Then we subtract the number of factors of n.

In this case, n2 = 262338 which has (62 + 1)(38 + 1) = 2457 factors,
2457− 1

2
= 1228 of which are less

than n. The number n itself has (31 + 1)(19 + 1) = 640 factors, so subtracting gives 1228− 640 = 588
factors.

9. The number is 3003 + 1 = (300 + 1)(3002 − 300 + 1). The former, 301, factors as 7 · 43. The latter
factor is 3002 − 300 + 1 = 3002 + 600 + 1− 900 = (300 + 1)2 − 302 = (301− 30)(301 + 30), and both 271
and 331 are prime. The sum is 7 + 43 + 271 + 331 = 652.

10. Factor out 319 from the first two terms to leave 319 (3 + 1)− 12. Factor out 12 to leave 12
(
318− 1

)
,

which factors by repeatedly using difference of two squares and cubes as (3− 1)(32 + 3 + 1)(36 + 33 +
1)(3 + 1)(32 − 3 + 1)(36 − 33 + 1). After tedious checking, the factorization is 25 · 3 · 7 · 13 · 19 · 37 · 757.

11. The number 360,000 = 26 · 32 · 54 has (6 + 1)(2 + 1)(4 + 1) = 105 factors. Since the factors of 360,000

pair up, each of them multiplying to 360,000, and there being
105

2
pairs, the product of all the factors

is (360,000)

105

2 . Expanding,
(
26 · 32 · 54

)105

2 has sum of exponents
105

2
(6 + 2 + 4) = 630.

12. Suppose f(r) = 0 for some integer r, and then f(x) = (x− r)g(x) for some polynomial g(x). Let the
four integers be a, b, c, d. Substituting a gives f(a) = p = (a− r)g(a), so a− r is a factor of p. Similarly,
b− r, c− r, d− r are all factors of p. Since these are all distinct, they must be −p,−1, 1, p in some order.

Then, from above, f(−p + r) = p = (−p)g(−p + r) implies g(−p + r) = −1; similarly, f(p + r) = p =
pg(p + r), so g(p + r) = 1. However, it is well-known that a− b is a factor of f(a)− f(b); applying this
shows (p + r)− (−p + r) = 2p is a factor of 1− (−1) = 2, which is impossible.

Divisibility

1. Dividing gives
n + 3

n− 1
= 1 +

4

n− 1
, so we must have n− 1|4. Since 4 has factors −4,−2,−1, 1, 2, 4, the

number of possible values of n is the same, 6.

2. Dividing gives 2n2 − n + 1
31

3n + 1
. As 31 is a prime, 3n + 1 must equal either −31,−1, 1 or 31, which

happens only for integers n = 0, 10.

3. The greatest common factor of 74 − 1 = 25 · 3 · 52 and 114 − 1 = 24 · 3 · 5 · 61 is 24 · 3 · 5. We show that
all p4 − 1 are divisible by 24 · 3 · 5. Note that p4 − 1 = (p2 + 1)(p− 1)(p + 1).

Since p is odd, p2 + 1 is even, and p− 1, p+ 1 are consecutive even integers, so their product is divisible
by 8. When divided by 3, p gives a remainder of 1 or 2; in the former, 3|p− 1, in the latter, 3|p + 1.
Similarly, it is always divisible by 5, as 5|p− 1 and 5|p + 1 when it has remainder 1 or 4, and 5|p2 + 1
otherwise. The greatest common factor is thus 24 · 3 · 5 = 240.
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4. Rationalizing the denominator gives
2013ab− bc +

(
b2 − ac

)√
2013

2013b2 − c2
. For this to be rational, the

irrational part must be zero, so b2 = ac. Thus a, b, c are in geometric sequence. Rewrite a, b, c as
a, ar, ar2.

Then
a2 + b2 + c2

a + b + c
=

a2 + a2r2 + a2r4

a + ar + ar2
= a(r2 − r + 1) after long division. Similarly,

a3 − 2b3 + c3

a + b + c
=

a2(r4 − r3 − r + 1). These are both integers.

5. Multiply both sides by x + y and transpose to obtain xy − 1000x− 1000y = 0. Add 1,000,000 to both
sides and factor to get (x − 1000)(y − 1000) = 1,000,000. It is easy to rule out the case where both
factors in the LHS are negative: they cannot both be −1000, and one must be smaller than −1000,
meaning either x or y must be negative.

Thus both are positive, and each factor of 1,000,000 = 26 · 56 corresponds to one positive integer pair.
Since it has 6 + 1)(6 + 1) = 49 factors, then there are 49 pairs.

6. It is well-known that all primes greater than 3 are either 1 or −1 modulo 6. Note that a number that is
−1 modulo 6 cannot be divisible by 2 or 3. If none of its prime factors were −1 modulo 6, then all of
its prime factors are 1, and their product would be 1 as well, contradiction. Therefore there must be a
prime that is −1 modulo 6 that divides it.

Suppose finitely many primes existed that are −1 modulo 6; multiplying them and adding either 4 or 6
(depending on number of primes) produces a new number that is also −1 modulo 6. This number must
be composite, and by the above, divisible by a prime that is −1 modulo 6. But when divided by any
such prime, it leaves a remainder of either 4 or 6, contradiction.

Diophantine equations

1. Since both 2x and 100 are even, so is 5y, and thus y is even as well. Any even y produces an integer
solution, the ones that give positive solutions are y = 2, 4, . . . , 18. Thus there are 9 ordered pairs.

2. Since 23x + 53y = (2x + 5y) 22x − 2x · 5y + 52y = 189. The factors of 189 are 1 · 189, 3 · 63, 7 · 27, 9 · 21.
The only pair that works is 9 · 21, giving the only values x = 2, y = 1.

3. Adding twice the second equation to the first gives 5x = 56− 3a, and subtracting the second equation
from twice the first gives 5y = 4a− 13. Since 56− 3a and 4a− 13 are integers divisible by 5, their sum,
a + 43, is divisible by 5, so a is an integer as well, and it is 2 modulo 5. Both 56− 3a and 4a− 13 have
to be positive, so a is at least 4 and at most 18. The only integers in this range that are 2 modulo 5 are
7, 12, 17.

4. This is 2xy−2x+y = 43 and subtracting 1 to both sides completes the rectangle, giving (2x+1)(y−1) =
42. Then 2x + 1 is an odd factor of 42, so it is either 3, 7, 21, giving x = 1, 3, 10, with corresponding
y = 15, 7, 3. The largest x + y is thus 16.

5. Adding 1 to both sides in each equation completes the rectangle, making (a + 1)(b + 1) = 16, (b + 1)(c +
1) = 100, and (c + 1)(a + 1) = 400. Taking the product of all equations and its square root gives
(a + 1)(b + 1)(c + 1) = 800. Dividing with second equation gives a + 1 = 8, so a = 7. Similarly, b = 1
and c = 49.

6. Adding twice the first equation to the second gives 16x + 13y = 77, which has only one nonnegative
integer solution, x = 4, y = 1. Substituting to either equation gives z = 2.

7. Cheat: it must be constant. One such soution is (3,−4), and by/xc = −1. In fact, the rest of the
solutions are (3− 4k, 7k − 4) for integral k, and indeed by/xc = −1.

8. Dividing both sides by xyz gives xyz−1yz
x−1zx

y−1 = 3. One of x, y, z must be 3, so WLOG x = 3.
Then yz − 1 = 1, which only happens for y = 2 and z = 1, giving (3, 2, 1), which works, and so does its
cycles, giving 3 triples.
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9. Note that
15

2013
=

(
1− 1

x1

)
· · ·

(
1− 1

xn

)
≥

(
1− 1

2

)
· · ·

(
1− 1

n + 1

)
=

1

n + 1
, showing n ≥ 134.

To prove this is achievable, set x1, . . . , x133 to 2, . . . , 134 and x134 = 671. This gives us the value(
1− 1

2

)
· · ·

(
1− 1

134

)(
1− 1

671

)
=

1

134
· · · 670

671
=

15

2013
. The minimum value is thus 134.

Modulo

1. The highest power of 5 dividing 16 is, by Legendre’s,

⌊
16

5

⌋
= 3, so we take out 8 and three factors of 5

and compute modulo 100 the product 1 · 2 · 3 · 4 · 1 · 6 · 7 · 1 · 9 · 2 · 11 · 12 · 13 · 14 · 3 · 16 = 96.

2. (The remainder when divided by 5 should be 4.) Since n+ 5 ≡ 3 (mod 4), n ≡ 3− 5 ≡ −2 ≡ 2 (mod 4).
Similarly, n ≡ 0 (mod 5). We check 5, 10, 15 if any give a remainder of 2 when divided by 4, and 10
works. Then 10 + 6 ≡ 16 (mod 2)0, so the remainder is 16.

3. Note that n = 1 works, but we require it to be greater than one. By CRT, the solutions to any linear
system of moduli differ by the LCM of the moduli. The LCM of 3, 4, 5, 6 is 60, so the next solution is
1 + 60 = 61.

4. Taking modulo 11, by Fermat’s Little Theorem, we only need to consider the exponent modulo 10.
However, 5! ≡ 0 (mod 1)0, so by Fermat’s Little Theorem, 3!5!

··· ≡
(
3!10

)··· ≡ 1··· ≡ 1 (mod 11). The
remainder is 1.

5. Since 96 = 3 · 32, we take modulo 3 and modulo 32. Modulo 3 the expression is 115 − (−1)15 − 115 −
(−1)15 − 115 ≡ 1. Modulo 32, everything evaporates except for −115 ≡ −1. It is 1 modulo 3 and −1
modulo 32, combining both gives the expression as 31 modulo 96.

6. Since 7, 8, 9 are relatively prime, 739ABC is divisible by 504. It is 739000 + ABC ≡ 136 + ABC ≡ 0
(mod 504), giving only the choices ABC = 368, 872.

7. If p | ap, then p | ap | aq. Suppose p | aq and p - ap, then there exists some prime power rn such that
rn | p and rn - ap. Then rn | p | aq so r | a, and rn | an. However, since rn - ap, then p < n. Then
rp | rn | p, but this implies rp < p, contradiction.


