VCSMS PRIME

Session 4: Combinatorics 1

compiled by Carl Joshua Quines
September 30, 2016

Ad hoc

1. The single-digit numbers account for $1+2+\cdots+9=45$ of the digits, the remaining $2015-45=1970$ digits are accounted for by two-digit numbers, which have two digits each. Thus we must have $2(10+11+\cdots+n) \leq 1970$, the maximum value is $n=44$. Thus the 1936 th digit onwards is $454545 \ldots$, so the 2015 th is 5 .
2. There are only four possible sets: $\{6,1,0\},\{5,2,0\},\{4,3,0\},\{4,2,1\}$. Multiplying by 3 ! to account for permutations gives 24 .
3. A vertically arranged block is determined by its topmost letter, which can appear anywhere in the top 10×12 part of the array, so there are 120 of them. Similarly, the horizontal blocks are determined by its leftmost letter, anywhere among the left $10 \times 12=120$ letters. Similarly for the diagonal blocks, but for two 10×10 blocks depending on its orientation. The total is $120+120+100+100=440$.
4. The cardinalities are $1,3, \ldots$, so we must have $1+3+\cdots+(2 n-1) \leq 2009$, which has the largest possible value of $n=44$. Thus 2009 appears in A_{45}.
5. Each diagonal has 5 skew diagonals, and there are 12 diagonals. We divide by 2 for overcounting: $5 \times 12 \div 2=30$.
6. Each number appears in $2^{1} 5$ subsets, depending on whether each of the other 15 numbers appear or no. Thus the sum is $2^{1} 5(1+2+\cdots+16)=4456448$.
7. The one-digit numbers take 9 digits and the two-digit numbers take 180 digits, so we stop at $\frac{2016-189}{3}+$
$99=708$ $99=708$.

From 0 to 99 , in the ones place the sum is $10(0+1+\cdots+9)$ and in the tens place the sum is $10(0+1+\cdots+9)$, so the total sum is $20(45)=900$. From 100 to 699 , there are 60 to 99 s and 100 occurences of 0 to 6 in the hundreds place, so $100(0+1+\cdots+6)+6(900)=7500$. Then $700, \ldots, 708$ have a sum of 99 , so the total is $900+7500+99=8499$.
8. On the main diagonal is 0 , then above and below there are two diagonals, each with $n-11 \mathrm{~s}$, above and below are two diagonals, each with $n-22 \mathrm{~s}$, etc. The summation is $\sum 2(n-i) i$ from $i=1$ to n, or $2\left(n \sum i-\sum i^{2}\right)=\frac{1}{3} n^{3}-\frac{1}{3} n$. Thus $n^{3}-n=7980$, and we observe that only $n=20$ works.
9. The first digit has to be 1 , then onwards, the digits have to be either 0 or 9 . The only choices are 1999, 1099, 1009, 1000, and the smallest is $\frac{1099}{19}$.
10. Burnside's, or bloody casework. We do casework on the number of white vertices. For 0 or 1 white vertices there is clearly one different way each. For 2 white vertices there are three ways: both connected by an edge, both on the same face but not adjacent, and on opposite vertices. For 3 white vertices there are four ways, all on the same face, all on opposite vertices, and two when two are connected. For 4 white vertices there are six ways: all on the same face, four where three share the same face, and one with two pairs opposite each other.
The $5,6,7,8$ white vertices are analogous to there being $3,2,1,0$ black vertices, so there are the same number of ways. That makes a total of $1+1+3+4+6+4+3+1+1=24$.

Inclusion-Exclusion

1. Of the 100 people, 60 claim to be good, so $100-60=40$ deny to be good. Of these, 30 correctly deny, so the rest must be people who are good at math but refuse to admit it: $40-30=10$.
2. There are $\left\lfloor\frac{2015}{3}\right\rfloor=671$ numbers less than 2015 divisible by 3 . Of these, $\left\lfloor\frac{671}{5}\right\rfloor=134$ are divisible by 5 and $\left\lfloor\frac{671}{7}\right\rfloor=95$ are divisible by 7 , with $\left\lfloor\frac{671}{35}\right\rfloor=19$ divisible by 35 . By PIE, the answer is $671-134-95+19=461$.
3. This is $\phi(10000)-1=10000\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)-1=3999$.
4. There are 638 numbers divisible by 3,239 divisible by 8,79 divisible by 24 , and 319 divisible by 6 in the range $[100,2015]$. The answer is $638+239-79-319=479$.
5. By PIE: $\left\lfloor\frac{999}{10}\right\rfloor+\left\lfloor\frac{999}{15}\right\rfloor+\left\lfloor\frac{999}{35}\right\rfloor+\left\lfloor\frac{999}{55}\right\rfloor-\left\lfloor\frac{999}{30}\right\rfloor-\left\lfloor\frac{999}{70}\right\rfloor-\left\lfloor\frac{999}{110}\right\rfloor-\left\lfloor\frac{999}{105}\right\rfloor-\left\lfloor\frac{999}{165}\right\rfloor-\left\lfloor\frac{999}{385}\right\rfloor+$ $\left\lfloor\frac{999}{210}\right\rfloor+\left\lfloor\frac{999}{330}\right\rfloor+\left\lfloor\frac{999}{770}\right\rfloor=146$.

Permutations

1. Casework: only 100 has a sum of 1 and 999 has a sum of 27 . By balls and urns, there are $\binom{10}{8}=45$ that sum to 8 , except 9 of these start with 0 . The sum is $1+1+45-9=38$.
2. There are $\frac{10!}{2!}$ permutations, since I is repeated. Except we overcount: we want to consider only AIIU out of its $\frac{4!}{2!}=12$ possible permutations. So we divide by 12 . This gives $\frac{10!}{12 \cdot 2!}=151200$.
3. In a line, this is $2 \times 6!\times 6!-$ pick either girl or boy to go first and alternate, then multiply by the number of ways to permute per gender. Divide by 12 to account for rotation in a circle: $2 \times 6!\times 6!\div 12=86400$.
4. There are $\frac{7!}{2!}=2520$ permutations since A is repeated. However, we want to consider only AEA out of its 3 permutations, so divide by 3 to get 840 .
5. Since $33750=2 \cdot 3^{3} \cdot 5^{4}$, we split to four cases: all prime numbers, which is $\frac{8!}{4!3!}=280$, one of them is 6 , which is $\frac{7!}{4!2!}=105$, one of them is 9 , which is $\frac{7!}{4!}=210$, and when both 6 and 9 are present, $\frac{6!}{4!}=30$. The sum is $280+105+210+30=625$.
6. There are 4 ! starting with $\mathrm{A}, 4$! with M, 4 ! with R , a total of 72 . Then 3 ! start with SA, a total of 78 . The first starting with SM is SMART, so that must be the 79th.
7. There are $\frac{7!}{2!2!2!}=630$ ways without restriction. There are $\frac{5!}{2!}=60$ ways where PHI appears and also $\frac{5!}{2!}=60$ ways where ILL appears. For strings with both PHI and ILL, it can be either as PHILL, I, P which is $3!=6$ ways, or as PHI, ILL and P for another $3!=6$ ways. By PIE, there are $630-60-60+6+6=522$ ways.
8. We use PIE. There are $\frac{6!}{2!2!2!}=90$ ways to arrange MURMUR. By symmetry, when two Ms, Us, or Rs are together, there are $\frac{5!}{2!2!}=30$ ways. Similarly, if two pairs of letters are together, there are $\frac{4!}{2!}=12$ ways. Finally there are 3 ! ways when each pair is together. By PIE, there are $90-30-30-30+12+12+12-6=$ 30 ways.

Combinations

1. There are 2^{n} subsets, 1 with no elements and n with one element. Thus $2^{n}-n-1=57$, which only has the solution $n=6$.
2. One of the numbers chosen has to be 7 , another has to be either 3,6 or 9 , the last number can be anything. This gives $1 \cdot 3 \cdot 7=21$, but we overcounted when the last number is also divisible by 3 , which happens 6 ways, when we only want to count it 3 times. So $21-6+3=18$.
3. Order the boys arbitrarily, then there are $6!=720$ ways to arrange the girls to form pairs.

Balls and urns

1. Let Amy, Bob and Charlie receive a, b, c cookies respectively; we have $a+b+c=15$, or $(a-4)+b+c=11$. Now each of $a-4, b, c$ are positive integers, so this is balls and urns. There are 10 slots in between and we pick 2 of them, so $\binom{10}{2}=45$ ways.
2. Balls and urns directly: $\binom{12}{2}=66$.
3. Consider $(x-1000)+(y-600)+(z-400)=16$, where each variable is now a positive integer, so by balls and urns there are $\binom{15}{2}=105$ ways.
4. Consider the 6 integers that are left. You are placing four integers such that no two are adjacent, so you have to place them in-between, in front, or behind the 6 integers, giving 7 slots. Each slot can only go to one integer so no two are adjacent, giving $\binom{7}{4}=35$ ways.
5. Consider the 7 books that are left. You are placing 5 books so that no two of them are adjacent, so you have to place them in-between, in front, or behind the 7 books, giving 8 slots. Each slot can only go to one book so no two are adjacent, so that's $\binom{8}{5}=56$ ways.
6. Similar as above, there are $\binom{8}{5}=56$ ways in a row. However, we overcount: we don't want to count the $\binom{6}{3}=20$ ways when a book is placed in front and behind. This is $56-20=36$ ways.
7. Bloody casework on $a+b$. When $a+b=0$, there is 1 solution for (a, b). Then either $c+d+e=0$, with $\binom{2}{2}$ solutions, $c+d+e=1$ with $\binom{3}{2}$ solutions, etc., up to $c+d+e=4$ with $\binom{6}{2}$ solutions, all by balls and urns. This is thus $\binom{2}{2}+\binom{3}{2}+\cdots+\binom{6}{2}=\binom{7}{3}=35$.
Similarly, $a+b=1$ has $\binom{2}{1}=2$ solutions, and the hockeystick sum is $\binom{2}{2}+\cdots+\binom{5}{2}=\binom{6}{3}=20$, so there are $2 \times 20=40$ ways. When $a+b=2$ then the sum is $\binom{3}{1} \times\left(\binom{2}{2}+\cdots+\binom{4}{2}\right)=30$. The sum of all cases is 105 .
