VCSMS PRIME

Session 7: Geometry 1 compiled by Carl Joshua Quines
October 12, 2016

Circles

1. Let the centers of the circles be A, B, one internal tangent be $C D$ tangent to circle A at C, and to circle B at D, and let E be the intersection of the two tangents.
Since $\angle E$ is right, and $\angle C$ is right as well, then $A C E$ must be an isosceles right triangle. Thus $A E, B E$ are $4 \sqrt{2}$ and $2 \sqrt{2}$, so $A B$ is $6 \sqrt{2}$.
2. Since $\angle Q P R+\angle Q S R=180^{\circ}$ then quadrilateral $P Q R S$ is cyclic, so C_{1} and C_{2} are the same circle, and they intersect at infinitely many points.
3. Drop the perpendicular from C to $A B$ at point D. Then $C D=5$, and $C B=13$, so by Pythagorean, $D B=12$. Similarly, $A D=12$, so the perimeter is $12+12+13+13=50$.
4. Extend $C B$ to meet the circle again at F. By power of a point, we get $C F=12$, and so $A F=5$. By Stewart's on triangle $O B F$ we find $O B=B F=2 \sqrt{6}$. Pythagorean on $O C D$ gives $O C=2 \sqrt{15}$.
5. Let C_{2} have center O, the smaller circle have center P, tangent to C_{1}, C_{2} and $A B$ at I, J, K, respectively. Let the smaller circle have radius r and let $O K=s$.
Then Pythagorean on $A P K$ gives $A P^{2}=A K^{2}+P K^{2}$, or $(A I+I P)^{2}=(A O+O K)^{2}+P K^{2}$, or $(12+r)^{2}=(12+s)^{2}+r^{2}$. Pythagorean on $O P K$ gives $O P^{2}=P K^{2}+O K^{2}$, or $(O J-J P)^{2}=P K^{2}+O K^{2}$, or $(12-r)^{2}=r^{2}+s^{2}$. The r^{2} term cancels in both equations, and we can equate $24 r$ in both to get $144-s^{2}=s^{2}+24 s$. Thus $s=6 \sqrt{3}-6$ and $r=3 \sqrt{3}$.
6. From power of a point on E we get $A E=B E$ so $A B E$ is equilateral. Thus $\angle A B C=120^{\circ}$. By the law of cosines $A C=2 \sqrt{7}$, and by the extended law of $\operatorname{sines} 2 R=\frac{A C}{\sin 120^{\circ}}$, so the circumradius is $\frac{2 \sqrt{21}}{3}$.

Angles

1. Let $\angle A B D=\angle D B C=x^{\circ}$. We know that $\angle A D B=\angle D B C+\angle B C D$ since it is an exterior angle, however $\angle A D B=\frac{180^{\circ}-\angle A B D}{2}$ as triangle $A B D$ is isosceles. Equating gives $x+36=\frac{180-x}{2}$, or $x=36^{\circ}$. Thus since triangle $A B D$ is isosceles, $\angle A D B=\frac{180^{\circ}-\angle A B D}{2}=72^{\circ}$; since triangle $A D E$ is isosceles $\angle A D E=\frac{180^{\circ}-\angle D A B}{2}=54^{\circ}$, and so $\angle B D E=\angle A D B-\angle A D E=17^{\circ}$.
2. Let Q be the midpoint of $B C$. Then $\angle A B P=\angle A P B=52^{\circ}$ by triangle angle sum on $A B P$, so $A B=B P$. Then $A B Q P$ is a rhombus. Then $A Q$ is an angle bisector since it is a diagonal, so $\angle A Q P=38^{\circ}$. But $P C \| A Q$ and $P Q \| C D$ so $\angle P C D=\angle A Q P=38^{\circ}$.
3. Note $\angle C B D=\angle A D B-\angle D C B$ upon considering exterior $\angle A D B$. But $\angle A D B=\angle A B D=\angle A B C-$ $\angle C B D$ through isosceles triangle $A B D$. Substituting, $\angle C B D=(\angle A B C-\angle C B D)-\angle D C B=$ $(\angle A B C-\angle A C B)-\angle C B D=45^{\circ}-\angle C B D$. Thus $\angle C B D=22.5^{\circ}$.
4. Since in $A F G E$ we have $\angle A F G+\angle A E G=90^{\circ}+90^{\circ}=180^{\circ}$, it is a cyclic quadrilateral. Similarly, since in $B D E F$ we have $\angle B E D=\angle B F D=90^{\circ}$ then it is also cyclic. Thus $\angle G A B=\angle G A F$, and $\angle G A F=\angle G E F$ by cyclic quadrilateral $A F G E$, and $\angle G E F=\angle B E F=\angle B D F$ by cyclic quadrilateral $B D E F$. However, $\angle B D F+\angle F D E=\angle C E D$ since $B C D E$ is a rectangle. Thus $\angle G A B=\angle B D F=17^{\circ}$.
5. From $C A \perp C G$ and $B G \perp C G$ we have $C A \| B G$. Then $\angle A B G+\angle C A B=180^{\circ}$, whence $\angle A B G=78^{\circ}$. Then $\angle A B G=\angle E B G=2 \angle E F G=2 \angle D F G$, so $\angle D F G=39^{\circ}$.

Three-dimensional

1. By Euler's formula, $V-E+F=2$, so $V=34$.
2. It is a regular tetrahedron of edge 1. Drop the height from the top vertex to the base, which hits its center. It forms a right triangle with one edge as the hypotenuse, the other leg is from the length from a vertex to the center. The other leg is $2 / 3$ the median, so its length is $\frac{\sqrt{3}}{3}$. This gives its height as $\sqrt{1^{2}-\left(\frac{\sqrt{3}}{3}\right)^{2}}=\frac{\sqrt{6}}{3}$. Its volume is one-third the area of the base times its height, or $\frac{1}{3} \cdot \frac{\sqrt{3}}{4} \cdot \frac{\sqrt{6}}{3}=\frac{\sqrt{2}}{12}$.
3. We stack the $7 \times 9 \times 11$ boxes in a $2 \times 3 \times 3$ fashion, making it take up $14 \times 27 \times 33$, which fits in the $17 \times 27 \times 37$ box. This makes the maximum number 18 .
4. Let the sides of the prism be x, y, z; we have $x y z=120$ and $(x-2)(y-2)(z-2)=24$. WLOG z is divisible by 5 . Then if $z=5$, we see $(6,4,5)$ works. The surface area is then $2(6 \cdot 5+5 \cdot 4+4 \cdot 6)=148$.
5. The centers of the spheres form a regular tetrahedron of edge 3 . Through similar logic as number 2 in this section, its height is $\sqrt{3^{2}-\sqrt{3}^{2}}=\sqrt{6}$. The overall height is the height of the tetrahedron plus two radii, so its height is $3+\sqrt{6}$.

Areas

1. The area consists of two 150° sectors of a circle with radius 10 , one on either side of the horse. Wrapping around the equilateral triangle gives two more 120° sectors, of radius $10-8=2$. The total area is thus $2 \cdot \frac{150^{\circ}}{360^{\circ}} \pi \cdot 10^{2}+2 \cdot \frac{120^{\circ}}{360^{\circ}} \pi \cdot 2^{2}=86 \pi$.
2. Drop the altitude from E to $A B$ and $C D$, which are parallel, so the altitude is the same line. The length of the altitude from E to $A B$ has to be 20 for the area of $A E B$ to be 60 . Since $A B \| C D$ we have $E A B \operatorname{sim} E D C$ and thus the length of the altitude from E to $C D$ has to be $\frac{80}{3}$. Thus the distance between lines $A B$ and $C D$ is $\frac{80}{3}-20=\frac{20}{3}$, which is also the length of the altitude from D to $A B$. Thus $[B A D]=\frac{1}{2} \cdot 6 \cdot \frac{20}{3}=20$.
3. Note that $\triangle A E B$ and $\triangle A E F$ share the same base and altitude, so they have the same area. Subtracting $[A E G]$ from both gives $[A B G]=[E F G]=9$. Similarly, $[C D H]=[E F H]=15$. Thus $[E G F H]=$ $[E F G]+[E F H]=24$.
4. (Should have E as intersection of diagonals.) Note that $A E B$ and $C E D$ are similar with ratio $6: 15$. Then $E B: E D=6: 15$ as well, as $A E D$ and $A E B$ share the same altitude from A, their areas are in the ratios of their bases, so $[A E B]:[A E D]=6: 15$. Thus $[A E B]=12$.
5. Let the triangle be $A B C$ intersecting the circle with center O at B^{\prime} and C^{\prime} lying on $A B$ and $A C$, respectively. The required region is quadrilateral $A B^{\prime} O C^{\prime}$ minus the sector with arc $B^{\prime} C^{\prime}$. This is twice the area of a unit equilateral triangle minus the unit sector of 60°, or $2 \cdot \frac{\sqrt{3}}{4}-\frac{1}{6} \pi=\frac{3 \sqrt{3}-\pi}{6}$.
6. In rectangle $A B M N$ with area 2 , triangles $A P M$ and $B P N$ form half the area, so the sum of their areas is $1 . P$ is vertically halfway between $A M$ and $B N$, so its distance to $D C$ is $\frac{3}{2}$. The area of $D P C$ is thus $\frac{1}{2} \cdot 2 \cdot \frac{3}{2}=\frac{3}{2}$. Then triangles $P Q R$ and $D C P$ are similar, but the height from P to $Q R$ is the
distance from P to $A B$, which is $\frac{1}{2}$. Thus the ratio of similarity is $1: 3$, so the ratio of their areas is $1: 9$, thus the area of $P Q R$ is $\frac{1}{6}$. The sum is $\frac{8}{3}$.
7. It is simplest to Cartesian bash. Set $M(0,0), B(0,18), I(16,0)$. Thus $H(0,8)$ and $A(6,0)$. Line $B A$ is $\frac{x}{6}+\frac{y}{18}=1$ in intercept form, also line $I H$ is $\frac{x}{16}+\frac{y}{8}=1$. Equating gives $\frac{x}{6}-\frac{x}{16}=\frac{y}{8}-\frac{y}{18}$ or $\frac{10 x}{6 \cdot 16}=\frac{10 y}{8 \cdot 18}$, cancelling gives $3 x=2 y$. Substituting back to either equation gives $T(4,6)$. Using the shoelace formula on $M A T H$ gives its area as 34 .
8. It is also simple to Cartesian bash: set $C(0,0), B(0,16), A(13,16)$ and $D(11,0)$. Then E is a midpoint so $E(12,8)$. The slope of $A D$ is 8 so the slope of $E F$ is $-\frac{1}{8}$. Point F lies on $B C$ so its x-coordinate is zero; it lies on $E F$ so $F(0,9.5)$. Using the shoelace formula gives 91 .
9. Suppose that point C is C^{\prime} after folding, and $D C^{\prime}$ and $E C^{\prime}$ intersect $A B$ at A^{\prime} and B^{\prime} respectively. Drop altitudes H from C to $D E$ and M from C to $A B$. Clearly C, H, M, C^{\prime} are collinear. The ratio $\left[A^{\prime} B^{\prime} C^{\prime}\right]:[A B C]=16: 100$ is given, thus the ratio $C^{\prime} M: C M=4: 10$ due to similarity. Also, $C H=C^{\prime} H$ since they are the same altitude after folding. Since $C H+C^{\prime} H=C M+C^{\prime} M$ due to collinearity, $2 C H=C M+\frac{2}{5} C M$ from earlier. By similarity, $C H: C M=7: 10=D E: A B$, so $D E=\frac{56}{5}$.
10. Let x be the side of the square. The Pythagorean theorem on right $C E H$ gives $\left(r-\frac{x}{2}\right)^{2}+x^{2}=r^{2}$, so $x=\frac{4}{5} r$. Thus $\angle H C E=\tan ^{-1} \frac{4}{3}$. The required area is equal to $[C H G F]$ minus the sector with arc $H M$; the former is $\frac{1}{2}\left(r+\frac{x}{2}+x\right) x$ while the latter is $\frac{1}{2} r^{2} \tan ^{-1} \frac{4}{3}$. Simplifying yields $r^{2}\left(\frac{22}{25}-\frac{1}{2} \tan ^{-1} \frac{4}{3}\right)$.
11. Official solution uses algebra and whatever. We use Cartesian. Take an affine transformation to $A(0,1), B(1,0), C(0,0)$ which preserves the problem, and let $P(a, b)$. It is easy to bash $D\left(-\frac{a}{b-1}, 0\right)$, $E\left(0,-\frac{b}{a-1}\right), F\left(\frac{a}{a+b}, \frac{b}{a+b}\right)$. Then $[D B P]=[E C P]=[F A P]$ and bashing gives $a=b=\frac{1}{3}$, which is as required.
