VCSMS PRIME

Session 8: Algebra 3 compiled by Carl Joshua Quines October 14, 2016

Manipulation

- 1. The first equation is $\frac{x^2 + y^2}{xy} = \frac{(x+y)^2 2xy}{xy} = 4$, giving $(x+y)^2 = 18$. Then $xy(x+y)^2 2(xy)^2 = 3 \cdot 18 2 \cdot 3^2 = 36$.
- 2. The required expression is $2(x^2 + y^2 + z^2 + xy + yz + zx)$. Squaring the first equation and transposing yz gives $x^2 + yz = 2013$, similarly, $y^2 + zx = 2014$ and $z^2 + xy = 2015$. Addding all expressions and multiplying by 2 gives the answer, 12084.
- 3. Substitute $2n \to k$ to get $m^3 3mk^2 = 40$ and $k^3 3m^2k = 20$, we are looking for $m^2 + k^2$. It reminds us of the triple angle formulas for sine and cosine, so substitute $m = r \cos \theta$ and $k = r \sin \theta$, now we are looking for r^2 . The equations become $r^3 (\cos^3\theta - 3\sin^2\theta\cos\theta) = 40$ and $r^3 (\sin^3\theta - 3\sin\theta\cos^2\theta) = 20$. It is a good idea to write each in terms of only one trigonometric function: substituting the Pythagorean identity shows us that the first equation is actually $r^3 (4\cos^3\theta - 3\cos\theta) = r^3\cos 3\theta = 40$. Similarly, the second equation is $r^3 \sin 3\theta = 20$. Squaring both equations and adding gives $r^6 = 2000$, from whence $r^2 = \sqrt[3]{2000} = 10\sqrt[3]{2}$.

More motivated but more high-powered: after substituting, notice $m^3 - 3mk^2 = 40$ and $k^3 - 3m^2k = 20$ look like the expressions from $(m-k)^3$, except the middle terms. We can fix this by making it $(m-ki)^3$; multiply the second equation by i and add to the first to get $m^3 - 3m^2ki - 3mk^2 + k^3i = 40 + 20i = (m-ki)^3$. Taking the modulus of both sides and using de Moivre's gives $|m-ki|^3 = \sqrt{40^2 + 20^2}$, so $m^2 + k^2 = |m-ki|^2 = 10\sqrt[3]{2}$.

4. Abuse degrees of freedom by setting x = y. The condition is $x^2 + 2x - 1 = 0$, and the expression needed is $x^2 + \frac{1}{x^2} - 2$. From the condition, $x^2 = 1 - 2x$ and dividing both sides of the condition by x^2 , $\frac{1}{x^2} = 1 + \frac{2}{x}$, so the expression is now $\frac{2}{x} - 2x = 2\left(\frac{1}{x} - x\right) = 2\left(\frac{1 - x^2}{x}\right)$. But from the condition, $1 - x^2 = 2x$, so $2\left(\frac{1 - x^2}{x}\right) = 4$.

(The legit solution is to clear denominators, factor the numerator, expand to get it as (xy + x + y + 1)(xy - x - y + 1). The first term is 2, the second term, when divided by xy, is the condition divided by xy.)

- 5. Cross-multiply the condition and divide both sides by a to get $a + \frac{1}{a} = 3$. Divide both numerator and denominator of the expression by a^3 ; the numerator becomes 1 and the denominator becomes $\left(a^3 + \frac{1}{a^3}\right) + \left(a^2 + \frac{1}{a^2}\right) + \left(a + \frac{1}{a}\right) + 1$. But from $a + \frac{1}{a} = 3$, we get $a^2 + \frac{1}{a^2} = 7$ after squaring both sides, and $a^3 + \frac{1}{a^3} = 18$ after cubing and subtracting the original expression. The denominator is thus 18 + 7 + 3 + 1 = 29, so the fraction is $\frac{1}{29}$.
- 6. Dividing both sides by 4 gives $\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \dots = \frac{\pi^2}{24}$. Subtracting from the original equation gives $1 + \frac{1}{9} + \frac{1}{25} + \dots = \frac{\pi^2}{8}$.
- 7. Squaring both sides and subtracting 2 gives $x^2 + x^{-2} = 7$. Repeating gives $x^{2^2} + x^{-2^2} = 47$, etc. The last two digits are 3, 7, 47, 7, 47, The pattern repeats, so the last two digits are 07.

8. Multiply the equations by a, b, c respectively, and subtract pairwise and transpose to get (a + bc)x = (b + ca)y = (c + ab)z. The required ratio is $\left(\frac{x}{y} - 1\right)\left(\frac{y}{z} - 1\right)\left(\frac{z}{x} - 1\right)$, to get these we divide the equations with each other and simplify: $\frac{(a-1)(b-1)(c-1)(a-b)(b-c)(c-a)}{(a+bc)(b+ca)(c+ab)}$.

Surds

- 1. Multiplying numerator and denominator by $\sqrt[3]{8} \sqrt[3]{2}$ and using the difference of two cubes, then cancelling out the factor 6, leaves $2 \sqrt[3]{2}$.
- 2. Expanding the right-hand side gives $2a^2 + 3b^2 + c^2 + 2ac\sqrt{2} + 2bc\sqrt{3} + 2ab\sqrt{6}$. Equating coefficients gives ac = -2, bc = -3, ab = 6. Multiplying all equations and taking the square root gives abc = 6, from whence a = -2, b = -3, c = 1 upon division by the three equations. Then $a^2 + b^2 + c^2 = 14$.
- 3. Squaring both sides gives $2x + 2\sqrt{x^2 3x 6} = 36$, or $\sqrt{x^2 3x 6} = 18 x$. Squaring both sides again gives $x^2 3x 6 = x^2 36x + 324$, whence x = 10.
- 4. Cubing both sides and using the binomial theorem, the terms which would end up with $\sqrt{5}$ in the expansion would have odd exponent for $\sqrt{5}$. If this were negative, then it would multiply out so the value must be $12 \sqrt{5}$.
- 5. Note that $a = 4 + \sqrt{15}$ and $b = 4 \sqrt{15}$ after rationalizing denominators. Then a + b = 8 and ab = 1. However, $a^4 + b^4 = (a^2 + b^2)^2 - 2(ab)^2 = ((a + b)^2 - 2ab)^2 - 2(ab)^2$. Substituting everything yields 7938.
- 6. Observe $2 = (1 + \sqrt[n]{2} 1)^n \ge 1 + {n \choose 2} (\sqrt[n]{2} 1)$ by the binomial theorem. The inequality follows.

Sequences

- 1. If there were perfect squares, the 150th term would be 150; except we skipped 12 terms, so it should be 162.
- 2. Abuse degrees of freedom: one such sequence is $0, 2, 2, 4, 4, \ldots, 98, 98, 100$, so the average of the first and hundredth terms is 50.

The legit method is to write $a_1 + a_2 = 2$, $a_2 + a_3 = 4$, ..., $a_{99} + a_{100} = 198$. Take the sum of the odd-numbered equations to find $a_1 + a_2 + \cdots + a_{100}$ and the sum of the even-numbered equations to find $a_2 + a_3 + \cdots + a_{99}$; taking their difference yields $a_1 + a_{100} = 100$, so the average is 50.

- 3. Add 1 to both sides of the recursion to get $b_{n+1} + 1 = \frac{2}{1+b_n}$, or $(b_n+1)(b_{n+1}+1) = 2$. So the terms alternate $\frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \dots$, so $b_{2010} b_{2009} = \frac{1}{2} \frac{1}{3} = \frac{1}{6}$.
- 4. From the geometric sequence, $16y^2 = 15xz$ and $\frac{2}{y} = \frac{1}{x} + \frac{1}{z}$, or $\frac{2}{y} = \frac{x+z}{xz}$. Substituting the first equation gives $\frac{32}{15}y = x + z$. The desired expression is $\frac{x^2 + z^2}{xz} = \frac{(x+z)^2 2xz}{xz} = \frac{(x+z)^2}{xz} 2$. Substituting the previous values for xz and x + z makes the y cancel, giving $\frac{34}{15}$.
- 5. It is clear that the terms in the sequence 1, 3, 7, 13, 21 are quadratic. The method of differences or Newton interpolation yields the formula $n^2 n + 1$, and continuing to 2015 means the sum is taken from n = 1 to 45. The sum is then $\sum n^2 \sum n + 45$, or 30405.
- 6. The condition is equivalent to $\frac{1}{a_{n+1}} = \frac{1}{a_n} + c$, so the reciprocals of the terms are arithmetic. With this in mind, c = 183.

7. It can be easily proven, say, with induction, that $a_n = \frac{1}{n!}$. Or prove $a_{n-1}/a_n = n$ with induction. The required sum is $1 + 2 + \cdots + 2009 = 2019045$.

Series

- 1. There were 17n+1 numbers on the board originally, making the original sum 602n plus whatever number was erased. Estimate $1+2+\cdots+17n+(17n+1) \ge 602n$ to get n = 4, the sum is $1+2+\cdots+69 = 2415$, and 602n = 2408. The erased number was 2415 2408 = 7.
- 2. Adding the first *n* and the last m n numbers gives the sum of the first *m* numbers being 7140. Solving $1 + 2 + \ldots + m = \frac{m(m+1)}{2} = 7140$ is to estimate $\sqrt{2 \times 7140} = \sqrt{14280} \approx 120$, checking, m = 119 works.
- 3. The sum of the first series is $\frac{\frac{a}{b}}{1-\frac{1}{b}} = \frac{a}{b-1} = 4$, so a = 4b-4. The second series is $\frac{\frac{a}{a+b}}{1-\frac{1}{a+b}} = \frac{a}{a+b-1}$. Substituting a = 4b-4, factoring out b-1, and cancelling gives its value as $\frac{5}{4}$.
- 4. Let the sum be S. Then $2S = 2+2+3\left(\frac{1}{2}\right)+4\left(\frac{1}{2}\right)^2+5\left(\frac{1}{2}\right)^3+\cdots$, and subtracting the original equation from it yields $S = 2 + (2 1) + \left(3\left(\frac{1}{2}\right) 1\right) + \left(4\left(\frac{1}{2}\right)^2 3\left(\frac{1}{2}\right)^2\right) + \left(5\left(\frac{1}{2}\right)^3 4\left(\frac{1}{2}\right)^3\right) + \cdots$, or $S = 2 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$. Then S is an infinite geometric series, with sum $S = \frac{2}{1 \frac{1}{2}} = 4$. 5. This is $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \cdots + \frac{1}{13 \times 15}$, which telescopes as $\frac{1}{2}\left(1 - \frac{1}{3}\right) + \frac{1}{2}\left(\frac{1}{3} - \frac{1}{5}\right) + \cdots + \frac{1}{2}\left(\frac{1}{13} - \frac{1}{15}\right)$.
- 5. This is $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{13 \times 15}$, which telescopes as $\frac{1}{2} \left(1 \frac{1}{3}\right) + \frac{1}{2} \left(\frac{1}{3} \frac{1}{5}\right) + \dots + \frac{1}{2} \left(\frac{1}{13} \frac{1}{15}\right)$ The sum is $\frac{7}{15}$.
- 6. The telescope is $\frac{1}{n(n-2)} = \frac{1}{2} \left(\frac{1}{n-2} \frac{1}{n} \right)$. Multiply both sides of the sum by 2 and expand the two telescopes to get $\frac{1}{3} + \frac{1}{4} \frac{1}{N-1} \frac{1}{N} < \frac{1}{2}$, or $\frac{1}{N-1} + \frac{1}{N} > \frac{1}{12}$. The maximum that satisfies this is when N = 24.
- 7. From i = 1 to 99, the value is 0. From i = 100 to 399, the value is 1, so the subtotal is 300. From i = 400 to 899, the value is 2, the subtotal is 1000. From i = 900 to 1599, the value is 3, the subtotal is 2100. From i = 1600 to 2015, the value is 4, so the subtotal is 1664. The total sum is 300 + 1000 + 2100 + 1664 = 5064.
- 8. Expand to prove f(x) + f(1 x) = 1, so pairing up terms in the series gives 1006.
- 9. Take the derivative of both sides of $(1+x)^{19} = \sum {\binom{19}{k}} x^k$ to get $19(1+x)^{18} = \sum k {\binom{19}{k}} x^{k-1}$. Substitute x = 1 to get $19 \cdot 2^{18}$.

Alternatively, there is a combinatorial proof involving choosing a subset of 19 people and making choosing 1 to be the leader: either you pick the subset first and choose 1 then, giving the sum, or you pick one to be the leader first and each of the 18 others are either in the subset or not.

Inequalities

- 1. The inequality $x^2 + x 12 > 0$ is (x + 4)(x 3) > 0. For it to have solution set (-4, 3), the sign should be reversed – so we must have $k(x^2 + 6x - k) < 0$ for all x. Then k should be negative and $x^2 + 6x - k$ should have negative discriminant, or k < -9. Thus $k \in (-\infty, 9]$ works.
- 2. By Cauchy–Schwarz, $(x^2 + y^2 + z^2)^2 \le (1^2 + 1^2 + 1^2)(x^4 + y^4 + z^4)$, giving k = 3.

- 3. From AM-GM, $S a_1 = a_2 + a_3 + a_4 + a_5 \ge 4\sqrt[4]{a_2a_3a_4a_5}$, taking the cyclic product gives $k = 4^5 = 1024$.
- 4. By Cauchy–Schwarz, $\left(1^2 + \left(\frac{a}{\sqrt{\sin x}}\right)^2\right) + \left(1^2 + \left(\frac{b}{\sqrt{\cos x}}\right)^2\right) \ge \left(1 + \left(\frac{ab}{\sqrt{\sin x \cos x}}\right)^2\right)$, and using the equality $\sin 2x = 2\sin x \cos x$, the right-hand side can be manipulated to give the right-hand side of the inequality.
- 5. The inequality clearly does not hold when k < 2, for example, when a = b = c = 1. To show it is true for k = 2, it is equivalent to $(2 + a)(2 + b) + (2 + b)(2 + c) + (2 + c)(2 + a) \le (2 + a)(2 + b)(2 + c)$ after clearing denominators. Expanding and cancelling many terms, then using 1 = abc, gives $ab + bc + ca \ge 3$ which is true by AM-GM as follows: $ab + bc + ca \ge 3 \{a^2b^2c^2\} = 3$. The steps are reversible.

Single-variable extrema

- 1. By AM-GM, since both terms are positive, $(7-x)^4(2+x)^5 \leq \left(\frac{(7-x)+\dots+(7-x)+(2+x)+\dots+(2+x)}{9}\right)^9$. The numerator simplifies to 38+x, and since we want equality, we let 7-x=2+x or x=2.5, making the maximum $(4.5)^9$.
- 2. We have $4x x^4 1 = -(x^4 2x^2 + 1) 2x^2 + 4x 1 + 1 = -(x^2 1)^2 2(x^2 2x + 1) + 2 = -(x^2 1)^2 2(x 1)^2 + 2 \le 2$ by the trivial inequality, equality at x = 1. Thus the maximum is 2.
- 3. Let A(4, 2), B(2, -4), and O be a point on $y = x^3$. We then wish to maximize AO BO, which occurs when O lies on the line AB past either end, which does indeed intersect the graph of $y = x^3$. Then AO BO = AB, and the distance is $2\sqrt{10}$.
- 4. By Cauchy–Schwarz, $(2(x-1)+4(2y))^2 \le (2^2+4^2)((x-1)^2+4y^2)$. The left-hand-side is 2x+8y-2 = 1, so we get $x^2 + 4y^2 2x \ge -\frac{19}{20}$.
- 5. Scrapped.

Multi-variable extrema

1. x and y are independent, so we want to minimize x and maximize y. This happens when x = -1 and y = 4, whence x - y = -5.

2. Clearly we must want all the terms to be positive, by AM-GM the sum is at least 2014 $\sqrt[2014]{\prod_{i=1}^{2014} \sin \theta_i \cos \theta_i} =$

 $2014 \sqrt[2014]{\prod_{i=1}^{2014} \frac{1}{2} \sin 2\theta_i} \ge 2014 \sqrt[2014]{\prod_{i=1}^{2014} \frac{1}{2}} = 1007, \text{ the last inequality from } \sin \theta \ge 1. \text{ Equality is achievable when } \sin 2\theta_i = 1, \text{ or when all the } \theta_i = 45^\circ, \text{ giving the maximum as } 1007.$

- 3. Distributing the product and the square root shows it is equivalent to $\sqrt{1 + \frac{b}{a}} + \sqrt{1 + \frac{a}{b}}$, which by AM-GM is at least $2\sqrt[4]{2 + \frac{b}{a} + \frac{a}{b}}$, and by AM-GM again is at least $2\sqrt[4]{2 + 2} = 2\sqrt{2}$.
- 4. This is $(2a^8 + a^4 2a^2) + (2b^6 b^3 2)$, so it suffices to minimize each independently. This can be done through calculus, the legit way is slower. Take $u = a^2$ and the derivative, to get minimum as $-\frac{5}{8}$; the second is just a quadratic with vertex at $-\frac{17}{8}$. Their sum is $-\frac{11}{4}$.
- 5. The legit solution is to manipulate cleverly and use AM–GM. The cheating solution is to convert it to a single-variable problem by substituting x = 8 2y and using calculus, the minimum is attained at y = 3, giving the value 8.

- 6. We factor out the 2 from 2 y and the 3 from 3 z to get $6(1 x)\left(1 \frac{y}{2}\right)\left(1 \frac{z}{3}\right)\left(x + \frac{y}{2} + \frac{z}{3}\right)$ which by AM-GM is at most $6\left(\frac{(1 - x) + (1 - \frac{y}{2}) + (1 - \frac{z}{3}) + (x + \frac{y}{2} + \frac{z}{3})}{4}\right)^4 = \frac{3^5}{2^7} = \frac{243}{128}.$
- 7. Substituting $x \to 1 x$ gives a system of linear equations, from which $f(x) = \frac{5(x-1)}{x^2 x + 1} = \frac{5}{(x-1)+1+\frac{1}{x-1}}$, and by AM-GM this is maximized when $x-1 = \frac{1}{x-1}$ or x = 2. Then $f(2) = \frac{5}{3}$.
- 8. The denominator is $(x^2 + y^2)^3 + 3x^3y^3$, dividing numerator and denominator by x^3y^3 and simplifying makes the expression $\frac{1}{\left(\frac{x}{y} + \frac{y}{x}\right)^3 + 3}$. We need to maximize $\frac{x}{y} + \frac{y}{x}$, which occurs when $x = \frac{1}{2}$ and $y = \frac{3}{2}$, making the minimum $\frac{27}{1081}$.
- 9. Let r + s = a and rs = b. The given is (a b)(a + b) = b, so $b^2 + b = a^2 \ge 4b$ by AM-GM. Hence $b \ge 3$ and $a \ge 2\sqrt{3}$, which makes the minimum of r + s rs = a b as $2\sqrt{3} 3$ and the minimum of r + s + rs = a + b as $2\sqrt{3} + 3$, which are achievable.