VCSMS PRIME

Session 8: Algebra 3
compiled by Carl Joshua Quines
October 14, 2016

Manipulation

1. The first equation is $\frac{x^{2}+y^{2}}{x y}=\frac{(x+y)^{2}-2 x y}{x y}=4$, giving $(x+y)^{2}=18$. Then $x y(x+y)^{2}-2(x y)^{2}=$ $3 \cdot 18-2 \cdot 3^{2}=36$.
2. The required expression is $2\left(x^{2}+y^{2}+z^{2}+x y+y z+z x\right)$. Squaring the first equation and transposing $y z$ gives $x^{2}+y z=2013$, similarly, $y^{2}+z x=2014$ and $z^{2}+x y=2015$. Addding all expressions and multiplying by 2 gives the answer, 12084 .
3. Substitute $2 n \rightarrow k$ to get $m^{3}-3 m k^{2}=40$ and $k^{3}-3 m^{2} k=20$, we are looking for $m^{2}+k^{2}$. It reminds us of the triple angle formulas for sine and cosine, so substitute $m=r \cos \theta$ and $k=r \sin \theta$, now we are looking for r^{2}. The equations become $r^{3}\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta\right)=40$ and $r^{3}\left(\sin ^{3} \theta-3 \sin \theta \cos ^{2} \theta\right)=20$. It is a good idea to write each in terms of only one trigonometric function: substituting the Pythagorean identity shows us that the first equation is actually $r^{3}\left(4 \cos ^{3} \theta-3 \cos \theta\right)=r^{3} \cos 3 \theta=40$. Similarly, the second equation is $r^{3} \sin 3 \theta=20$. Squaring both equations and adding gives $r^{6}=2000$, from whence $r^{2}=\sqrt[3]{2000}=10 \sqrt[3]{2}$.
More motivated but more high-powered: after substituting, notice $m^{3}-3 m k^{2}=40$ and $k^{3}-3 m^{2} k=20$ look like the expressions from $(m-k)^{3}$, except the middle terms. We can fix this by making it $(m-k i)^{3}$; multiply the second equation by i and add to the first to get $m^{3}-3 m^{2} k i-3 m k^{2}+k^{3} i=40+20 i=$ $(m-k i)^{3}$. Taking the modulus of both sides and using de Moivre's gives $|m-k i|^{3}=\sqrt{40^{2}+20^{2}}$, so $m^{2}+k^{2}=|m-k i|^{2}=10 \sqrt[3]{2}$.
4. Abuse degrees of freedom by setting $x=y$. The condition is $x^{2}+2 x-1=0$, and the expression needed is $x^{2}+\frac{1}{x^{2}}-2$. From the condition, $x^{2}=1-2 x$ and dividing both sides of the condition by $x^{2}, \frac{1}{x^{2}}=1+\frac{2}{x}$, so the expression is now $\frac{2}{x}-2 x=2\left(\frac{1}{x}-x\right)=2\left(\frac{1-x^{2}}{x}\right)$. But from the condition, $1-x^{2}=2 x$, so $2\left(\frac{1-x^{2}}{x}\right)=4$.
(The legit solution is to clear denominators, factor the numerator, expand to get it as $(x y+x+y+$ $1)(x y-x-y+1)$. The first term is 2 , the second term, when divided by $x y$, is the condition divided by $x y$.)
5. Cross-multiply the condition and divide both sides by a to get $a+\frac{1}{a}=3$. Divide both numerator and denominator of the expression by a^{3}; the numerator becomes 1 and the denominator becomes $\left(a^{3}+\frac{1}{a^{3}}\right)+\left(a^{2}+\frac{1}{a^{2}}\right)+\left(a+\frac{1}{a}\right)+1$. But from $a+\frac{1}{a}=3$, we get $a^{2}+\frac{1}{a^{2}}=7$ after squaring both sides, and $a^{3}+\frac{1}{a^{3}}=18$ after cubing and subtracting the original expression. The denominator is thus $18+7+3+1=29$, so the fraction is $\frac{1}{29}$.
6. Dividing both sides by 4 gives $\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\cdots=\frac{\pi^{2}}{24}$. Subtracting from the original equation gives $1+\frac{1}{9}+\frac{1}{25}+\cdots=\frac{\pi^{2}}{8}$.
7. Squaring both sides and subtracting 2 gives $x^{2}+x^{-2}=7$. Repeating gives $x^{2^{2}}+x^{-2^{2}}=47$, etc. The last two digits are $3,7,47,7,47, \ldots$ The pattern repeats, so the last two digits are 07 .
8. Multiply the equations by a, b, c respectively, and subtract pairwise and transpose to get $(a+b c) x=$ $(b+c a) y=(c+a b) z$. The required ratio is $\left(\frac{x}{y}-1\right)\left(\frac{y}{z}-1\right)\left(\frac{z}{x}-1\right)$, to get these we divide the equations with each other and simplify: $\frac{(a-1)(b-1)(c-1)(a-b)(b-c)(c-a)}{(a+b c)(b+c a)(c+a b)}$.

Surds

1. Multiplying numerator and denominator by $\sqrt[3]{8}-\sqrt[3]{2}$ and using the difference of two cubes, then cancelling out the factor 6 , leaves $2-\sqrt[3]{2}$.
2. Expanding the right-hand side gives $2 a^{2}+3 b^{2}+c^{2}+2 a c \sqrt{2}+2 b c \sqrt{3}+2 a b \sqrt{6}$. Equating coefficients gives $a c=-2, b c=-3, a b=6$. Multiplying all equations and taking the square root gives $a b c=6$, from whence $a=-2, b=-3, c=1$ upon division by the three equations. Then $a^{2}+b^{2}+c^{2}=14$.
3. Squaring both sides gives $2 x+2 \sqrt{x^{2}-3 x-6}=36$, or $\sqrt{x^{2}-3 x-6}=18-x$. Squaring both sides again gives $x^{2}-3 x-6=x^{2}-36 x+324$, whence $x=10$.
4. Cubing both sides and using the binomial theorem, the terms which would end up with $\sqrt{5}$ in the expansion would have odd exponent for $\sqrt{5}$. If this were negative, then it would multiply out - so the value must be $12-\sqrt{5}$.
5. Note that $a=4+\sqrt{15}$ and $b=4-\sqrt{15}$ after rationalizing denominators. Then $a+b=8$ and $a b=1$. However, $a^{4}+b^{4}=\left(a^{2}+b^{2}\right)^{2}-2(a b)^{2}=\left((a+b)^{2}-2 a b\right)^{2}-2(a b)^{2}$. Substituting everything yields 7938.
6. Observe $2=(1+\sqrt[n]{2}-1)^{n} \geq 1+\binom{n}{2}(\sqrt[n]{2}-1)$ by the binomial theorem. The inequality follows.

Sequences

1. If there were perfect squares, the 150 th term would be 150 ; except we skipped 12 terms, so it should be 162.
2. Abuse degrees of freedom: one such sequence is $0,2,2,4,4, \ldots, 98,98,100$, so the average of the first and hundredth terms is 50 .
The legit method is to write $a_{1}+a_{2}=2, a_{2}+a_{3}=4, \ldots, a_{99}+a_{100}=198$. Take the sum of the odd-numbered equations to find $a_{1}+a_{2}+\cdots+a_{100}$ and the sum of the even-numbered equations to find $a_{2}+a_{3}+\cdots+a_{99}$; taking their difference yields $a_{1}+a_{100}=100$, so the average is 50 .
3. Add 1 to both sides of the recursion to get $b_{n+1}+1=\frac{2}{1+b_{n}}$, or $\left(b_{n}+1\right)\left(b_{n+1}+1\right)=2$. So the terms alternate $\frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \ldots$, so $b_{2010}-b_{2009}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$.
4. From the geometric sequence, $16 y^{2}=15 x z$ and $\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$, or $\frac{2}{y}=\frac{x+z}{x z}$. Substituting the first equation gives $\frac{32}{15} y=x+z$. The desired expression is $\frac{x^{2}+z^{2}}{x z}=\frac{(x+z)^{2}-2 x z}{x z}=\frac{(x+z)^{2}}{x z}-2$. Substituting the previous values for $x z$ and $x+z$ makes the y cancel, giving $\frac{34}{15}$.
5. It is clear that the terms in the sequence $1,3,7,13,21$ are quadratic. The method of differences or Newton interpolation yields the formula $n^{2}-n+1$, and continuing to 2015 means the sum is taken from $n=1$ to 45 . The sum is then $\sum n^{2}-\sum n+45$, or 30405 .
6. The condition is equivalent to $\frac{1}{a_{n+1}}=\frac{1}{a_{n}}+c$, so the reciprocals of the terms are arithmetic. With this in mind, $c=183$.
7. It can be easily proven, say, with induction, that $a_{n}=\frac{1}{n!}$. Or prove $a_{n-1} / a_{n}=n$ with induction. The required sum is $1+2+\cdots+2009=2019045$.

Series

1. There were $17 n+1$ numbers on the board originally, making the original sum $602 n$ plus whatever number was erased. Estimate $1+2+\cdots+17 n+(17 n+1) \geq 602 n$ to get $n=4$, the sum is $1+2+\cdots+69=2415$, and $602 n=2408$. The erased number was $2415-2408=7$.
2. Adding the first n and the last $m-n$ numbers gives the sum of the first m numbers being 7140. Solving $1+2+\ldots+m=\frac{m(m+1)}{2}=7140$ is to estimate $\sqrt{2 \times 7140}=\sqrt{14280} \approx 120$, checking, $m=119$ works.
3. The sum of the first series is $\frac{\frac{a}{b}}{1-\frac{1}{b}}=\frac{a}{b-1}=4$, so $a=4 b-4$. The second series is $\frac{a}{1-\frac{1}{a+b}}=\frac{a}{a+b-1}$. Substituting $a=4 b-4$, factoring out $b-1$, and cancelling gives its value as $\frac{5}{4}$.
4. Let the sum be S. Then $2 S=2+2+3\left(\frac{1}{2}\right)+4\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)^{3}+\cdots$, and subtracting the original equation from it yields $S=2+(2-1)+\left(3\left(\frac{1}{2}\right)-1\right)+\left(4\left(\frac{1}{2}\right)^{2}-3\left(\frac{1}{2}\right)^{2}\right)+\left(5\left(\frac{1}{2}\right)^{3}-4\left(\frac{1}{2}\right)^{3}\right)+\cdots$, or $S=2+1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots$. Then S is an infinite geometric series, with sum $S=\frac{2}{1-\frac{1}{2}}=4$.
5. This is $\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\cdots+\frac{1}{13 \times 15}$, which telescopes as $\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\frac{1}{2}\left(\frac{1}{13}-\frac{1}{15}\right)$. The sum is $\frac{7}{15}$.
6. The telescope is $\frac{1}{n(n-2)}=\frac{1}{2}\left(\frac{1}{n-2}-\frac{1}{n}\right)$. Multiply both sides of the sum by 2 and expand the two telescopes to get $\frac{1}{3}+\frac{1}{4}-\frac{1}{N-1}-\frac{1}{N}<\frac{1}{2}$, or $\frac{1}{N-1}+\frac{1}{N}>\frac{1}{12}$. The maximum that satisfies this is when $N=24$.
7. From $i=1$ to 99 , the value is 0 . From $i=100$ to 399 , the value is 1 , so the subtotal is 300 . From $i=400$ to 899 , the value is 2 , the subtotal is 1000 . From $i=900$ to 1599 , the value is 3 , the subtotal is 2100 . From $i=1600$ to 2015 , the value is 4 , so the subtotal is 1664 . The total sum is $300+1000+2100+1664=5064$.
8. Expand to prove $f(x)+f(1-x)=1$, so pairing up terms in the series gives 1006 .
9. Take the derivative of both sides of $(1+x)^{19}=\sum\binom{19}{k} x^{k}$ to get $19(1+x)^{18}=\sum k\binom{19}{k} x^{k-1}$. Substitute $x=1$ to get $19 \cdot 2^{18}$.
Alternatively, there is a combinatorial proof involving choosing a subset of 19 people and making choosing 1 to be the leader: either you pick the subset first and choose 1 then, giving the sum, or you pick one to be the leader first and each of the 18 others are either in the subset or not.

Inequalities

1. The inequality $x^{2}+x-12>0$ is $(x+4)(x-3)>0$. For it to have solution set $(-4,3)$, the sign should be reversed - so we must have $k\left(x^{2}+6 x-k\right)<0$ for all x. Then k should be negative and $x^{2}+6 x-k$ should have negative discriminant, or $k<-9$. Thus $k \in(-\infty, 9]$ works.
2. By Cauchy-Schwarz, $\left(x^{2}+y^{2}+z^{2}\right)^{2} \leq\left(1^{2}+1^{2}+1^{2}\right)\left(x^{4}+y^{4}+z^{4}\right)$, giving $k=3$.
3. From AM-GM, $S-a_{1}=a_{2}+a_{3}+a_{4}+a_{5} \geq 4 \sqrt[4]{a_{2} a_{3} a_{4} a_{5}}$, taking the cyclic product gives $k=4^{5}=1024$.
4. By Cauchy-Schwarz, $\left(1^{2}+\left(\frac{a}{\sqrt{\sin x}}\right)^{2}\right)+\left(1^{2}+\left(\frac{b}{\sqrt{\cos x}}\right)^{2}\right) \geq\left(1+\left(\frac{a b}{\sqrt{\sin x \cos x}}\right)^{2}\right)$, and using the equality $\sin 2 x=2 \sin x \cos x$, the right-hand side can be manipulated to give the right-hand side of the inequality.
5. The inequality clearly does not hold when $k<2$, for example, when $a=b=c=1$. To show it is true for $k=2$, it is equivalent to $(2+a)(2+b)+(2+b)(2+c)+(2+c)(2+a) \leq(2+a)(2+b)(2+c)$ after clearing denominators. Expanding and cancelling many terms, then using $1=a b c$, gives $a b+b c+c a \geq 3$ which is true by AM-GM as follows: $a b+b c+c a \geq 3\left\{a^{2} b^{2} c^{2}\right\}=3$. The steps are reversible.

Single-variable extrema

1. By AM-GM, since both terms are positive, $(7-x)^{4}(2+x)^{5} \leq\left(\frac{(7-x)+\cdots+(7-x)+(2+x)+\cdots+(2+x)}{9}\right)^{9}$.

The numerator simplifies to $38+x$, and since we want equality, we let $7-x=2+x$ or $x=2.5$, making the maximum $(4.5)^{9}$.
2. We have $4 x-x^{4}-1=-\left(x^{4}-2 x^{2}+1\right)-2 x^{2}+4 x-1+1=-\left(x^{2}-1\right)^{2}-2\left(x^{2}-2 x+1\right)+2=$ $-\left(x^{2}-1\right)^{2}-2(x-1)^{2}+2 \leq 2$ by the trivial inequality, equality at $x=1$. Thus the maximum is 2 .
3. Let $A(4,2), B(2,-4)$, and O be a point on $y=x^{3}$. We then wish to maximize $A O-B O$, which occurs when O lies on the line $A B$ past either end, which does indeed intersect the graph of $y=x^{3}$. Then $A O-B O=A B$, and the distance is $2 \sqrt{10}$.
4. By Cauchy-Schwarz, $(2(x-1)+4(2 y))^{2} \leq\left(2^{2}+4^{2}\right)\left((x-1)^{2}+4 y^{2}\right)$. The left-hand-side is $2 x+8 y-2=$ 1 , so we get $x^{2}+4 y^{2}-2 x \geq-\frac{19}{20}$.
5. Scrapped.

Multi-variable extrema

1. x and y are independent, so we want to minimize x and maximize y. This happens when $x=-1$ and $y=4$, whence $x-y=-5$.
2. Clearly we must want all the terms to be positive, by AM-GM the sum is at least $2014 \sqrt[2014]{\prod_{i=1}^{2014} \sin \theta_{i} \cos \theta_{i}}=$ $2014 \sqrt[2014]{\prod_{i=1}^{2014} \frac{1}{2} \sin 2 \theta_{i}} \geq 2014 \sqrt[2014]{\prod_{i=1}^{2014} \frac{1}{2}}=1007$, the last inequality from $\sin \theta \geq 1$. Equality is achievable when $\sin 2 \theta_{i}=1$, or when all the $\theta_{i}=45^{\circ}$, giving the maximum as 1007 .
3. Distributing the product and the square root shows it is equivalent to $\sqrt{1+\frac{b}{a}}+\sqrt{1+\frac{a}{b}}$, which by AM-GM is at least $2 \sqrt[4]{2+\frac{b}{a}+\frac{a}{b}}$, and by AM-GM again is at least $2 \sqrt[4]{2+2}=2 \sqrt{2}$.
4. This is $\left(2 a^{8}+a^{4}-2 a^{2}\right)+\left(2 b^{6}-b^{3}-2\right)$, so it suffices to minimize each independently. This can be done through calculus, the legit way is slower. Take $u=a^{2}$ and the derivative, to get minimum as $-\frac{5}{8}$; the second is just a quadratic with vertex at $-\frac{17}{8}$. Their sum is $-\frac{11}{4}$.
5. The legit solution is to manipulate cleverly and use AM-GM. The cheating solution is to convert it to a single-variable problem by substituting $x=8-2 y$ and using calculus, the minimum is attained at $y=3$, giving the value 8 .
6. We factor out the 2 from $2-y$ and the 3 from $3-z$ to get $6(1-x)\left(1-\frac{y}{2}\right)\left(1-\frac{z}{3}\right)\left(x+\frac{y}{2}+\frac{z}{3}\right)$ which by AM-GM is at most $6\left(\frac{(1-x)+\left(1-\frac{y}{2}\right)+\left(1-\frac{z}{3}\right)+\left(x+\frac{y}{2}+\frac{z}{3}\right)}{4}\right)^{4}=\frac{3^{5}}{2^{7}}=\frac{243}{128}$.
7. Substituting $x \rightarrow 1-x$ gives a system of linear equations, from which $f(x)=\frac{5(x-1)}{x^{2}-x+1}=$ $\frac{5}{(x-1)+1+\frac{1}{x-1}}$, and by AM-GM this is maximized when $x-1=\frac{1}{x-1}$ or $x=2$. Then $f(2)=\frac{5}{3}$.
8. The denominator is $\left(x^{2}+y^{2}\right)^{3}+3 x^{3} y^{3}$, dividing numerator and denominator by $x^{3} y^{3}$ and simplifying makes the expression $\frac{1}{\left(\frac{x}{y}+\frac{y}{x}\right)^{3}+3}$. We need to maximize $\frac{x}{y}+\frac{y}{x}$, which occurs when $x=\frac{1}{2}$ and $y=\frac{3}{2}$, making the minimum $\frac{27}{1081}$.
9. Let $r+s=a$ and $r s=b$. The given is $(a-b)(a+b)=b$, so $b^{2}+b=a^{2} \geq 4 b$ by AM-GM. Hence $b \geq 3$ and $a \geq 2 \sqrt{3}$, which makes the minimum of $r+s-r s=a-b$ as $2 \sqrt{3}-3$ and the minimum of $r+s+r s=a+b$ as $2 \sqrt{3}+3$, which are achievable.
