VCSMS PRIME

Session 9: Geometry 2

compiled by Carl Joshua Quines
October 19, 2016

Ad hoc

1. (16QIII1) In the right triangle $A B C$, where $\angle B=90^{\circ}, B C: A B=1: 2$, construct the median $B D$ and let point E be on $B D$ such that $C E \perp B D$. Determine $B E: E D$.
2. (14NA9) A circle with diameter 2 is tangent to both diagonals of a square with side length of 2 . The circle intersects the square at points P and Q. Find the length of segment $P Q$.
3. (9N5) Segments $A C$ and $B D$ intersect at point P such that $P A=P D$ and $P B=P C$. Let E be the foot of the perpendicular from P to the line $C D$. Prove that the line $P E$ and the perpendicular bisectors of $P A$ and $P B$ are concurrent.
4. (10N2) On a cyclic quadrilateral $A B C D$, there is a point P on side $A D$ such that the triangle $C D P$ and the quadrilateral $A B C P$ have equal perimeters and equal areas. Prove that two sides of $A B C D$ have equal lengths.
5. (8N3) Let P be a point outside a circle, and let the two tangent lines through P touch the circle at A and B. Let C be a point on the minor arc $A B$, and let ray $P C$ intersect the circle again at another point D. Let L be the line that passes through B parallel to $P A$, and let let L intersect rays $A C$ and $A D$ at points E and F, respectively. Prove that B is the midpoint of $E F$.

Triangles

1. (15AI5) Triangle $A B C$ has a right angle at B, with $A B=3$ and $B C=4$. If D and E are points on $A C$ and $B C$, respectively, such that $C D=D E=\frac{5}{3}$, find the perimeter of quadrilateral $A B E D$.
2. (16AI11) Circle O is inscribed in the right triangle $A C E$ with $\angle A C E=90^{\circ}$, touching sides $A C, C E$ and $A E$ at points B, D and F, respectively. The length of $A B$ is twice the length of $B C$. Find the length of $C E$ if the perimeter of $A C E$ is 36 units.
3. (8AII2) Let $A B C$ be an acute-angled triangle. Let D and E be points on $B C$ and $A C$ such that $A D \perp B C$ and $B E \perp A C$. Let P be the point where ray $A D$ meets the semicircle constructed outwardly on $B C$, and Q be the point where ray $B E$ meets the semicircle constructed outwardly on $A C$. Prove that $P C=Q C$.
4. (9AII3) The bisector of $\angle B A C$ intersects the circumcircle of triangle $A B C$ again at D. Let $A D$ and $B C$ intersect at E, and F be the midpoint of $B C$. If $A B^{2}+A C^{2}=2 A D^{2}$, show that $E F=D F$.
5. (11N2) In triangle $A B C$, let X and Y be the midpoints of $A B$ and $A C$, respectively. On segment $B C$, there is a point D, different from its midpoint, such that $\angle X D Y=\angle B A C$. Prove that $A D$ is perpendicular to $B C$.

Coordinate geometry

1. (16QII3) Let S be the set of all points A on the circle $x^{2}+(y-2)^{2}=1$ so that the tangent line at A has a non-negative y-intercept; then S is the union of one or more circular arcs. Find the total length of S.
2. (15AI7) Find the area of the triangle having vertices $A(10,-9), B(19,3)$, and $C(25,-21)$.
3. (16AII3) Point P on side $B C$ of triangle $A B C$ satisfies $B P: P C=2: 1$. Prove that the line $A P$ bisects the median of triangle $A B C$ drawn from vertex C.
