VCSMS PRIME

Session 9: Geometry 2

compiled by Carl Joshua Quines
October 19, 2016

Ad hoc

1. Let $B C=1, A B=2$. Then $A C=\sqrt{5}$, and $C D=D A=B D=\frac{\sqrt{5}}{2}$ by Thales's. Since $C D=D A$ and they share the same altitude from $B,[B C D]=[B D A]=\frac{1}{2}[A B C]=\frac{1}{2}$. But $[B C D]=\frac{1}{2} C E \cdot B D$, so $C E=\frac{2 \sqrt{5}}{5}$. Using the Pythagorean theorem gives $B E$ and $E D$, then $B E: E D=2: 3$.
2. Let the center of the circle be O, the intersection of the diagonals of the square $A B C D$ be E. Let the tangents from A to the circle be $A R$ and $A S$, with R lying on $A E$. Let $E O$ intersect the square at T, and let $R E=x$.
Then $A R=\sqrt{2}-x$ as $A E=\sqrt{2}$, and $A S=A R$ as they are both tangents from A. But clearly ATOS is a rectangle, so $A S=T O$, whence $E O=E T+T O=1+\sqrt{2}-x$. From Pythagorean on $E R O$, we have $E O^{2}=R E^{2}+R O^{2}$ or $(1+\sqrt{2}-x)^{2}=x^{2}+1$, giving $x=1$ by inspection.
Then $T O=\sqrt{2}-1$, and $P O=1$, so by Pythagorean $P T=\sqrt{2 \sqrt{2}-2} . P Q$ is double this, or $2 \sqrt{2 \sqrt{2}-2}=\sqrt{8(\sqrt{2}-1)}$.
3. Let the perpendicular bisectors of $A P$ and $B P$ intersect at O, and let $O P$ intersect $C D$ again at F. Then $\angle C P F=\angle A P O$ due to vertical angles. However, $\angle A B P=\frac{1}{2} \angle A O P=\frac{1}{2}\left(180^{\circ}-2 \angle A P O\right)$ since $A O=O P$ due to it being the circumcenter, and thus $A O P$ is isosceles. This makes $\angle A B P=$ $90^{\circ}-\angle A P O=90^{\circ}-\angle C P F$. But $\angle A B P=\angle D C P$ since $\triangle A B P \cong \triangle D C P$ by SAS. Thus $\angle D C P=$ $\angle F C P=90^{\circ}-\angle C P F$, so $\angle F C P+\angle C P F=90^{\circ}$ and thus $\angle P F C=90^{\circ}$, which is what we wanted.
4. Let $A B=a, B C=b, C D=c, D A=d, P D=p$. Then $[C P D]=\frac{1}{2} c p \sin D$, and $[A B C P]=$ $[A B C]+[A C D]-[C P D]=\frac{1}{2} a b \sin B+\frac{1}{2} c d \sin D-\frac{1}{2} c p \sin D$, but $\sin B=\sin D$ since it is a cyclic quadrilateral. Factoring out, $[C P D]=[A B C P]$ implies $c p=a b+c d-c p$, or $2 c p=a b+c d$. Equal perimeters imply $2 p=a+b-c+d$, substituting yields $a c+b c-c^{2}+c d=a b+c d$, which factors as $(c-a)(c-b)=0$. Thus either $c=a$ or $c=b$.
5. There is a solution using similar triangles, as the official solution: from $P B C \sim P D B$ implies $B C / B D=B P / D P$ and from $P A C \sim P D A$ implies $A C / A D=A P / D P$. Since $A P=B P$, we get $B C / A C=B D / A D$. But from $A E B \sim A B C, B C / A C=B E / A B$ and from $A F B \sim A B D$ we get $B D / A D=B F / A B$. Thus $B E / A B=B F / A B$ and $B E=B F$.

But projective is much nicer. Since $A A, B B$ and $C D$ concur, then $A C B D$ is a harmonic quadrilateral, and $-1=(A, B ; C, D)$. Taking a perspectivity through A to line $E F$ gives us $-1=(T, B ; E, F)$, where T is the point on infinity on $E F$, from whence B is the midpoint.

Triangles

1. We can construct a lot of altitudes, but trigonometry is cleaner: $D E^{2}=D C^{2}+E C^{2}-2 D C$. $E C \cos \angle D C E$, but $\cos \angle D C E=\cos \angle A C B=\frac{4}{5}$. Thus $C E=\frac{8}{3}$, so the perimeter of $A B E D$ is $\frac{28}{3}$.
2. Let $B C=x$, from which $A B=A F=2 x$ as they are both tangents, $B C=C D=x$ as they are both tangents. For the perimeter to be 36 , we must have $E F=D F=18-3 x$. Using Pythagorean on $A C E$ gives $x=0,3$, where 0 is obviously extraneous. Then $C E=18-2 x=12$.
3. Since $A Q C \sim Q E C$, we get $A C / Q C=Q C / E C$, or $Q C^{2}=E C \cdot A C$. Similarly, $P C^{2}=D C \cdot B C$. As $\angle A E B=\angle A D B=90^{\circ}$ then $A B D E$ is cyclic and $E C \cdot A C=D C \cdot B C$ by power of a point through C, whence $P C^{2}=Q C^{2}$ and $P C=Q C$.
4. WLOG $A B<A C$. Use Ptolemy's, Pythagorean, and the given identity to show that $2 \cdot D F(A B+A C)=$ $B C \cdot A C-B C \cdot A B$. Since $E F=E C-F C$, we can find $E C$ using angle bisector theorem and $F C$ is half of $B C$. Simplifying shows $D F=E F$.
5. Let Z be the midpoint of $B C$. Since $X Y Z \sim A B C$, then $\angle X Z Y=\angle B A C=\angle X D Y$ so $X D Z Y$ is cyclic. But $\angle X D B=180^{\circ}-\angle X D Z=\angle X Y Z=\angle A B C$ again since $X Y Z \sim A B C$. This implies $X A=X B=X D$, and thus $A B$ is a diameter of $(A B D)$, from which $\angle A D B=90^{\circ}$.

Coordinate geometry

1. Let the center of the circle be $Q(0,2)$ and let P be a point on the circle. From the equation, it has radius 1 . When P is on the upper semicircle, the tangent line clearly intersects the y-axis above the circle, so it has a positive y-intercept.
Consider the point P such that the tangent line through Q passes through the origin $O(0,0)$. Since it is a tangent, $\angle Q P O=90^{\circ}$, since it is a radius, $Q P=1$ and we know the distance $Q O=2$. Thus triangle $Q P O$ is a $30-60-90$ triangle. Then $\angle P Q O=60^{\circ}$.
There is a 60° arc from either side in the lower half, and in this arc everything has non-negative y-intercept. There is the whole upper half from earlier, which makes a total of $60^{\circ}+60^{\circ}+180^{\circ}=300^{\circ}$. The length of the arcs is thus $\frac{300^{\circ}}{360^{\circ}} 2 \pi r=\frac{5}{3} \pi$.
2. Shoelace formula gives 144 .
3. Assign a mass of $1 A, 1 B$ and $2 C$. Let E be the midpoint of $A B$, and G be the intersection of $C E$ and $A P$. Then $1 A+1 B=2 E$, and since $B P: P C=2: 1$, we have $1 B+2 C=3 P$. Then $4 G=1 A+3 P=2 E+2 C$, making G the midpoint of $E C$.
