VCSMS PRIME

Session 9: Geometry 2 compiled by Carl Joshua Quines October 19, 2016

Ad hoc

- 1. Let BC = 1, AB = 2. Then $AC = \sqrt{5}$, and $CD = DA = BD = \frac{\sqrt{5}}{2}$ by Thales's. Since CD = DA and they share the same altitude from B, $[BCD] = [BDA] = \frac{1}{2}[ABC] = \frac{1}{2}$. But $[BCD] = \frac{1}{2}CE \cdot BD$, so $CE = \frac{2\sqrt{5}}{5}$. Using the Pythagorean theorem gives BE and ED, then BE : ED = 2 : 3.
- 2. Let the center of the circle be O, the intersection of the diagonals of the square ABCD be E. Let the tangents from A to the circle be AR and AS, with R lying on AE. Let EO intersect the square at T, and let RE = x.

Then $AR = \sqrt{2} - x$ as $AE = \sqrt{2}$, and AS = AR as they are both tangents from A. But clearly ATOS is a rectangle, so AS = TO, whence $EO = ET + TO = 1 + \sqrt{2} - x$. From Pythagorean on ERO, we have $EO^2 = RE^2 + RO^2$ or $(1 + \sqrt{2} - x)^2 = x^2 + 1$, giving x = 1 by inspection.

Then $TO = \sqrt{2} - 1$, and PO = 1, so by Pythagorean $PT = \sqrt{2\sqrt{2} - 2}$. PQ is double this, or $2\sqrt{2\sqrt{2} - 2} = \sqrt{8(\sqrt{2} - 1)}$.

- 3. Let the perpendicular bisectors of AP and BP intersect at O, and let OP intersect CD again at F. Then $\angle CPF = \angle APO$ due to vertical angles. However, $\angle ABP = \frac{1}{2} \angle AOP = \frac{1}{2} (180^{\circ} - 2 \angle APO)$ since AO = OP due to it being the circumcenter, and thus AOP is isosceles. This makes $\angle ABP = 90^{\circ} - \angle APO = 90^{\circ} - \angle CPF$. But $\angle ABP = \angle DCP$ since $\triangle ABP \cong \triangle DCP$ by SAS. Thus $\angle DCP = \angle FCP = 90^{\circ} - \angle CPF$, so $\angle FCP + \angle CPF = 90^{\circ}$ and thus $\angle PFC = 90^{\circ}$, which is what we wanted.
- 4. Let AB = a, BC = b, CD = c, DA = d, PD = p. Then $[CPD] = \frac{1}{2}cp\sin D$, and $[ABCP] = [ABC] + [ACD] [CPD] = \frac{1}{2}ab\sin B + \frac{1}{2}cd\sin D \frac{1}{2}cp\sin D$, but $\sin B = \sin D$ since it is a cyclic quadrilateral. Factoring out, [CPD] = [ABCP] implies cp = ab + cd cp, or 2cp = ab + cd. Equal perimeters imply 2p = a + b c + d, substituting yields $ac + bc c^2 + cd = ab + cd$, which factors as (c a)(c b) = 0. Thus either c = a or c = b.
- 5. There is a solution using similar triangles, as the official solution: from $PBC \sim PDB$ implies BC/BD = BP/DP and from $PAC \sim PDA$ implies AC/AD = AP/DP. Since AP = BP, we get BC/AC = BD/AD. But from $AEB \sim ABC$, BC/AC = BE/AB and from $AFB \sim ABD$ we get BD/AD = BF/AB. Thus BE/AB = BF/AB and BE = BF.

But projective is much nicer. Since AA, BB and CD concur, then ACBD is a harmonic quadrilateral, and -1 = (A, B; C, D). Taking a perspectivity through A to line EF gives us -1 = (T, B; E, F), where T is the point on infinity on EF, from whence B is the midpoint.

Triangles

- 1. We can construct a lot of altitudes, but trigonometry is cleaner: $DE^2 = DC^2 + EC^2 2DC \cdot EC \cos \angle DCE$, but $\cos \angle DCE = \cos \angle ACB = \frac{4}{5}$. Thus $CE = \frac{8}{3}$, so the perimeter of ABED is $\frac{28}{3}$.
- 2. Let BC = x, from which AB = AF = 2x as they are both tangents, BC = CD = x as they are both tangents. For the perimeter to be 36, we must have EF = DF = 18 3x. Using Pythagorean on ACE gives x = 0, 3, where 0 is obviously extraneous. Then CE = 18 2x = 12.

- 3. Since $AQC \sim QEC$, we get AC/QC = QC/EC, or $QC^2 = EC \cdot AC$. Similarly, $PC^2 = DC \cdot BC$. As $\angle AEB = \angle ADB = 90^{\circ}$ then ABDE is cyclic and $EC \cdot AC = DC \cdot BC$ by power of a point through C, whence $PC^2 = QC^2$ and PC = QC.
- 4. WLOG AB < AC. Use Ptolemy's, Pythagorean, and the given identity to show that $2 \cdot DF(AB + AC) = BC \cdot AC BC \cdot AB$. Since EF = EC FC, we can find EC using angle bisector theorem and FC is half of BC. Simplifying shows DF = EF.
- 5. Let Z be the midpoint of BC. Since $XYZ \sim ABC$, then $\angle XZY = \angle BAC = \angle XDY$ so XDZY is cyclic. But $\angle XDB = 180^{\circ} \angle XDZ = \angle XYZ = \angle ABC$ again since $XYZ \sim ABC$. This implies XA = XB = XD, and thus AB is a diameter of (ABD), from which $\angle ADB = 90^{\circ}$.

Coordinate geometry

1. Let the center of the circle be Q(0,2) and let P be a point on the circle. From the equation, it has radius 1. When P is on the upper semicircle, the tangent line clearly intersects the y-axis above the circle, so it has a positive y-intercept.

Consider the point P such that the tangent line through Q passes through the origin O(0,0). Since it is a tangent, $\angle QPO = 90^{\circ}$, since it is a radius, QP = 1 and we know the distance QO = 2. Thus triangle QPO is a 30 - 60 - 90 triangle. Then $\angle PQO = 60^{\circ}$.

There is a 60° arc from either side in the lower half, and in this arc everything has non-negative y-intercept. There is the whole upper half from earlier, which makes a total of $60^{\circ} + 60^{\circ} + 180^{\circ} = 300^{\circ}$. The length of the arcs is thus $\frac{300^{\circ}}{360^{\circ}}2\pi r = \frac{5}{3}\pi$.

- 2. Shoelace formula gives 144.
- 3. Assign a mass of 1A, 1B and 2C. Let E be the midpoint of AB, and G be the intersection of CE and AP. Then 1A + 1B = 2E, and since BP : PC = 2 : 1, we have 1B + 2C = 3P. Then 4G = 1A + 3P = 2E + 2C, making G the midpoint of EC.