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Domain and range

1. Notice that x2 − 4x+ 1 = (x− 2)2 − 3. The minimum is thus 2−3 and it is unbounded, the range is
thus [1/8,+∞).

2. For the domain, x2 − 10x + 29 = (x − 5)2 + 4 ≥ 4, thus there is no restriction for the square root.
The denominator cannot be 0, thus the radical cannot be 2/5, but this is impossible. The domain is
(−∞, +∞).
From above, the radical can be anything in [2,+∞). The maximum is when the radical is 2, giving 3/4.
As the radical grows larger, it approaches 0. The range is (0, 3/4].

3. We have 25− x2 − y2 ≥ 0, |x| − y ≥ 0. The first is a circle with radius 5, the second is an absolute value
function. The intersection is a sector with angle 270◦, which has area 75π/4.

4.
⌊
x2 − x− 2

⌋
will be 0 if 0 ≤ x2 − x− 2 < 1. Solving yields (

1−
√
13

2
,−1] ∪ [2,

1 +
√
13

2
).

5. For f , as x approaches −∞, 3−x approaches +∞ and the fraction approaches 2. As x approaches
+∞, 3−x approaches 0 and the fraction approaches 1/2. The range of f is thus (−∞, 1/2) ∪ (2,∞).
Similarly the range of g is (−3, 4).

6. Solving for y yields y =
12ex + 3

3ex + 1
. By a similar argument as number 5,m = 3.

7. We have f4(x) > 0, f3(x) > 1, f2(x) > e, f(x) > ee,x > ee
e . The domain is (ee

e

, +∞).

8. When x = a, b, c, f is 1. Since the degree of f is at most 2, and we have three distinct values of f , by
interpolating, f(x) = 1. The range is {1}.

Logarithms

1. The sum is 1 × 3 + · · · + 20 × 22. This is equal to (22 − 1) + · · · + (212 − 1), which we can evaluate
using the sum of squares formula as 3290.

2. Raising both sides to the base, we have 4 = (x2 − 3x)2. Thus x2 − 3x = +2,−2. We see that the
negative case is impossible after substituting in the original equation. Thus x2 − 3x = 2, which has two
real roots.

3. We have
∣∣∣log 1

2
|x|

∣∣∣ − 1 = 0. Thus log 1
2
|x| = ±1, or |x| = 1

2 , 2. This has four real solutions, thus the
graph crosses the x-axis four times.

4. After noting that x > 0 from the log2014 x in the exponent, taking the base-x logarithm of both sides
yields logx

√
2014+log2014 x = 2014. Substituting u = log2014 x and using the fact that logx

√
2014 =

1

2u
,

we see that 2u2 − 4028u + 1 = 0. Suppose that the roots of this are u1 = log2014 x1,u2 = log2014 x2

and thus by Vieta’s and the product rule for logarithms we have u1 + u2 = 2014 = log2014(x1x2). The
product of the roots x1 and x2 to the original equation is thus 20142014 which has units digit 6.

5. Multiplying the three given equations yields (xyz)2 = 10a+b+c, taking the logarithms of both sides

yields log x+ log y + log z =
a+ b+ c

2
.

6. Note that a = log14 16 = 4 log14 2. Thus log14 2 = a/4. Thus log8 14 =
1

log14 8
=

1

3 log14 2
=

4

3a
.
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Exponents

1. a) Note that 43 = 26. Equating exponents, 2x = 6, and thus x = log2 6.
b) We see that x = 1 is a solution. Equating exponents yields x = 2. Thus x = 1, 2.
c) Equating exponents, xx = x2. From b, we have x = 1, 2. Thus x = 1, 2.
d) Again, we see that x = 1 is a solution. Equating exponents yields x = ± 2010

√
2010. Thus x =

1,± 2010
√
2010.

2. Taking hundredth roots yields n3 > 35 = 243. The smallest integral n that satisfies this is 7.

3. First, compare 1116 and 2512 = 524 by taking the eighth root, reducing the comparison to 112 and 53.
It is clear that the former is lesser. Compare 2512 = 524 and 1614 = 256 by taking the eighth root,
reducing the comparison to 53 and 27. It is clear that the former is lesser. From least to greatest, we
have 1116, 2512, 1614.

4. We factor the LHS as (92x−1)(9 − 1) = 8
√
3, by equating exponents, we have 2x − 1 = 1

2 . Thus
(2x− 1)2x =

√
2/8.

More logarithms

1. We see that 23 < 32, thus 2 < 32/3, log3 2 < 2/3. Since 6252 < 753, 6252/3 < 75, 2/3 < log625 75.

Finally, we see that log625 75 =
log5 75

4
< log5 3. Thus from least to greatest, we have log3 2, 2/3,

log625 75, log5 3.

2. After solving, we see x = 1/2. The infinite geometric series evaluates to 2.

3. Simplifying, we see that this is equivalent to 1− loga b+1− logb a. The minimum value of loga b+logb a
is 2 by AM-GM, thus the maximum value of the expression is 0.

4. Simplifying, we see 5k2m = 400n = (5224)n. We have k = 2n,m = 4n. Since the greatest common
divisor must be 1, we have n = 1, k = 2,m = 4, k +m+ n = 7.

5. After trial and error, we find m = 5 works.

6. Let u = 5
1
2x . Simplifying, we have u2+125 < 30u which factors into (u−5)(u−25) < 0, thus u ∈ (5, 25)

and x ∈ (1/4, 1/2).

7. We have x ≥ 2(x− 1), thus x ≤ 2. But from the argument of log(x− 1) we have x > 1. Combining, we
see all x ∈ (1, 2] work.

Floor, ceiling, fractional

1. The equation is 2 bxc = bxc + {x} + 2{x}, which is bxc = 3{x}. As {x} ∈ [0, 1), the only values for
which 3{x} is an integer is {x} ∈ {0, 1/3, 2/3}. These give solutions x = 0, 4/3, 8/3.

2. Note that x must be nonnegative. We do casework on bxc. When bxc = 0, clearly x = 0. When

bxc = 1 then 2x(x − 1) = 1, which has solution 1 +
√
3

2
. When bxc = 2, then 2x(x − 2) = 4, which

has solution 1 +
√
3. If bxc ≥ 3, then examining the discriminant reveals there is no solution. Thus

x = 0,
1 +

√
3

2
, 1 +

√
3.

3. In the interval (1/42, 1/4], y is 1, its length is 1/4− 1/42. In the interval (1/44, 1/43], y is 3, its length
is 1/43 − 1/44. Continuing the pattern, the desired sum is 1/4− 1/42 + 1/43 − 1/44 + · · · , an infinite
geometric series with sum 1/5.
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Value-finding

1. Letting x = 0, we see f(0) = 2. Similarly, we see f(7) = 383. The difference is 381.

2. We set f(a) = 1 and subtract f(1) on both sides. We see that f(b)2 = 1 for all b. Thus f(1)− f(−1)
can be anything in {−2, 0, 2}.

3. We substitute x = 0 and x = 3 to get the system of equations 2f(0)−2f(3) = −18,−f(3)−2f(0) = −30.
Solving, we get f(0) = 7.

Cauchy functional equation

Note: if we have f(x+ y) = f(x) + f(y), the solution from Q → R is f(x) = kx. Similarly, the solution to
f(x+ y) = f(x)f(y) is f(x) = kx and the solution to f(xy) = f(x) + f(y) is f(x) = logk x.

1. Letting y = 0 in the second equation and cancelling f(0) on both sides yields f(x) = 0 for all x. Thus
f(π2013) = 0.

2. As per the note, the solution is f(x) = kx. We see that k = 3/2 and thus f(2009) = 3013.5.

3. As per the note, the solution is f(x) = kx. We see that k = 5 and 3f(−2) = 3/25.

Other functional equations

1. Letting x = y = 0 gives f(0) = 1/2009. Letting x = y gives f(x) = ±1/2009. The negative case fails,
thus f(

√
2009) = 1/2009.

2. Let x = 0 to get f(−1) = f(y)− 2y− 2. Let y = 0 to get f(−1) = −1. Equating gives us f(y) = 2y+1
for all y.

3. Let y = 0 to get f(0) = 0. Let x = 0 to get f is odd. Switch x and y and equate to the original, use
f(y − x) = −f(x− y); rearrange to get

f(x+ y)/(x+ y) = f(x− y)/(x− y).

Thus f(a)/a is a constant k for all a, and f(a) = ka. We have k = 3/5 and thus f(2015) = 1209.

4. Let g(x) = (x+ 2009)/(x− 1). The given is x+ f(x) + 2f(g(x)) = 2010. Replace x with g(x) to get

g(x) + f(g(x)) + 2f(x) = 2010. Solving, f(x) = x2 + 2007x− 6028

3x− 3
.

5. Let f(0) = a, set x = 0 to get f(a) = 1. Set x = a to get f(1) = 1− a, set x = 1 to get f(1− a) = a.
Set x = 1− a to get f(a) = 1− a+ a2. We get either a = 0, 1, either of which make a contradiction.
Thus no f exists.
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Circular functions

1. As cosx = − cos(180◦ − x), the sum is 0.

2. Rearranging, x/y = 5/3 = tan θ. Thus sin θ = 5/
√

34.

3. The line is the terminal side of an angle θ. Note that tan θ = tan 75◦, so the angle is 75◦. The tangent
line to the unit circle makes an angle of 165◦ with the origin, so its slope is tan 165◦ = −2 +

√
3.

4. We let x = 1 to get the sum of the coefficients as cos(2 cos−1(0)) = −1.

Identities

1. The half-angle identity gives cos 15◦ =

√
6 +
√

2

4
.

2. We wish to evaluate log2 sin(π/8) cos(15π/8). By the product-to-sum identity, this is log2(1/2)(sin(2π)+
sin(7π/4)) = −3/2.

3. We use the fact that tan(x + y) =
tanx+ tan y

1− tanx tan y
to get tanx tan y =

1

2
. Then cot2 x + cot2 y =

(tanx+ tan y)2 − 2 tanx tan y

tan2 x tan2 y
= 96.

4. Note that cot(37◦+8◦) =
cot 37◦ cot 8◦ − 1

cot 37◦ + cot 8◦
= 1, so cot 37◦ cot 8◦−1 = cot 37◦+cot 8◦. This rearranges

to (1− cot 37◦)(1− cot 8◦) = 2.

5. We see cot(cot−1 2 + cot−1 3) =
2 · 3− 1

2 + 3
= 1. Similarly, cot(cot−1 4 + cot−1 5) = 19/9. Finally,

cot(cot−1 1 + cot−1 19/9) = 5/14.

6. Note that tan θ◦ cos 1◦ + sin 1◦ =
sin θ◦ cos 1◦ + sin 1◦ cos θ◦

cos θ◦
=

sin(θ◦ + 1◦)

cos θ◦
. The product telescopes

using cofunctions and the result is
1

sin 1◦
= csc 1◦.

7. Interpret this with the unit circle: there is a right triangle with legs of length secα and cscα, and
its hypotenuse is tanα + cotα. The area of the triangle is equal to half the product of its legs, or
1
2 secα cscα. It is also equal to half the product of the hypotenuse and the altitude to the hypotenuse,

or 1
2 (tanα+ cotα). The answer is

√
14.

Equations

1. (The equation holds for all x.) By phase shift, 2 sin 3x = 2 cos
(

3x− π

2
+ 2kπ

)
= −2 cos

(
3x+

π

2
+ 2kπ

)
for some k ∈ Z. The product ac in both cases is (4k − 1)π.

2. Square both sides to yield 1−2 sin 2θ cos 2θ = 1−sin 4θ = 3/2, giving sin 4θ = −1/2. Since θ ∈
(
−π

2
,
π

2

)
,

it follows 4θ ∈ (−2π, 2π). In this interval, sin 4θ becomes −1/2 four times, so the equation has four
solutions.

3. Square both sides and substitute cos2 θ = 1−sin2 θ to yield 5 sin2 θ+2 sin θ−3 = (5 sin θ−3)(sin θ+1) = 0.
Either sin θ = 3/5 or sin θ = −1, but we can eliminate the latter as 0 < θ < π/2. Thus sin θ = 3/5.
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4. Substituting sec2 x = tan2 x+ 1 and simplifying gives the quadratic equation tan2 x+ 6 tanx− 16 =
(tanx+ 8)(tanx− 2) = 0, thus x ∈ {tan−1 2± kπ, tan−1(−8)± kπ|k ∈ Z}.

5. Transpose
1

cosx
and square both sides. Substitute sin2 x = 1− cos2 x and then cosx = u to get the

equation
3

1− u2
= 16 +

1

u2
− 8

u
. Clear the denominators to get 16u4 − 8u3 − 12u2 + 8u− 1 = 0.

By inspection, u =
1

2
works; dividing through gives 8u3 − 6u+ 1 = 0. This reminds one of the triple

angle formula cos 3x = 4 cos3 x− 3 cosx. We rewrite the equation as 4u3 − 3u = −1

2
= cos 3x. Keeping

in mind x ∈ (−π/2, 0), we let 3x = −4π

3
and get x = −4π

9
.

6. Transpose the first term of the left hand side, use the double angle formulae, and then use cofunctions
to get cos(2x+ b) = sin(2ax− π) = cos(3π/2− 2ax). We can see that there are two cases: when a = 1
and b = π/2 + 2kπ, k ∈ Z, or when a = −1 and b = 3π/2 + 2kπ, k ∈ Z.

7. Substitute cotα =
1

tanα
and simplify to get tanβ =

1− tanα

1 + tanα
. Cross-multiply and rearrange the

terms to get tanα+ tanβ = 1− tanα tanβ, which is
tanα+ tanβ

1− tanα tanβ
= tan(α+ β) = 1, so α+ β = π/4.

8. Note cos 8θ = 2 cos2 4θ − 1, so
1

2
+

1

2
cos 8θ = cos2 4θ. Taking the positive root and repeating gives

cos θ. Thus cos 4θ, cos 2θ and cos θ must all be at least 0. This is when θ ∈
[
0,
π

8

]
∪
[

15π

8
, 2π

]
.

Triangle laws

1. This is a 45◦ − 45◦ − 90◦ triangle, thus ∠ACD = 60◦ and ∠CDA = 75◦. By the sine law,
CD

sin 45◦
=

AC

sin 75◦
, so CD =

√
3− 1. The altitude of ADC with respect to the base AC has length CD sin 60◦ =

1

2
(3−

√
3), thus the area is

1

4
(3−

√
3).

2. There is a solution with the sine law, but the synthetic solution involves letting D be the foot of the
altitude from C to AB, making ADC a 30◦ − 60◦ − 90◦ triangle and BCD a 45◦ − 45◦ − 90◦ triangle.

AD has length

√
2

2
and CD and BD both have length

√
6

2
. The area is then

3 +
√

3

2
.

3. Let BM = MC = x. By Apollonius’, AC =
√

2x2 − 14. We use the cosine law to get cos∠BAC =

42 −
(√

2x2 − 14
)2 − (2x)

2

2 · 4
√

2x2 − 14
=

1− x2

4
√

2x2 − 14
. We want to maximize this, and upon seeing the nu-

merator being negative, we are inspired to take the negative and minimize using AM-GM. Then

cos∠BAC = − 1

4
√

2

(
x2 − 1√
x2 − 7

)
= − 1

4
√

2

(
x2 − 7√
x2 − 7

+
6√

x2 − 7

)
= − 1

4
√

2

(√
x2 − 7 +

6√
x2 − 7

)
≤

− 1

4
√

2
· 2
√

6 = −
√

3

2
by AM-GM. Thus ∠BAC ≥ 150◦.

4. By the cosine law,
a2 + b2 − c2

ab
= 2 cos γ. Since 2 cos γ = 2 cos(π − α− β) = −2 cos(α+ β), we can use

the sum formula for cosine to get the answer as
32

65
.

5. There is a straightforward solution with the sine law, but we will proceed synthetically. Let A′ be the
point on the line AB that is not N such that A′A = 6. Then AA′ = AC = AN = 6, thus A is the center
of a circle with diameter A′N containing point C, and ∠A′CN = 90◦. Draw a line through N parallel
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to CA′ and let it intersect lines CM and CB at P and Q respectively. Since 4A′MC ∼ 4PMN and

4A′BC ∼ 4NBQ, we have PN =
MN

MA′
·CA′ and QN =

BN

BA′
·CA′, and substituting the given shows

that PN = QN , which implies 4CNP ∼= 4CNQ, which implies ∠MCN = ∠NCB.

6. By the cosine law, a2 = b2 + c2 − bc. Factoring, b3 + c3 = (b+ c)(b2 + c2 − bc) = (b+ c)a2. Add a3 to
both sides and rearrange to get the desired equality.
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Ad hoc

1. Each factor of 5 in 126! has a corresponding factor of 2 to produce a trailing zero, so we only need to count

the number of factors of 5. It is well-known to be, by Legendre’s formula,

⌊
126

5

⌋
+

⌊
126

25

⌋
+

⌊
126

125

⌋
=

25 + 5 + 1 = 31.

2. By Legendre’s,

⌊
27

2

⌋
+

⌊
27

4

⌋
+

⌊
27

8

⌋
+

⌊
27

16

⌋
= 13 + 6 + 3 + 1 = 23.

3. The answer is 26. Selecting all 25 even numbers has no two relatively prime; by Pigeonhole, selecting
26 will guarantee two consecutive numbers are selected, which are relatively prime.

4. It is easy to verify the cases n = 0, 1 to not produce perfect squares. Suppose n ≥ 2 and factor out 72

to produce 72
(
7n−2 + 9

)
. Since the first factor is a perfect square, so should the second.

Let m2 = 7n−2 + 9, so 7n−2 = m2 − 32 = (m− 3)(m + 3). Then both m− 3 and m + 3 are two powers
of 7 differing by 6, and since the difference between consecutive powers of 7 increases, the only possible
choice is m = 4, giving n = 3. The answer is 1.

5. Factoring out 28 gives 28
(
1 + 23

)
+ 2n = 2n + 2832. Let m2 = 2n + 2832, and transposing and using

the difference of two squares gives 2n = (m− 48)(m + 48). Then m− 48 and m + 48 are two powers of
two that differ by 96, the only possible pair being 32 and 128, giving n = 12.

6. Since abcde is divisible by 5, the only choice for e must be 5. There are only three even-numbered digits,
and b, e, f must all be even, so they match to b, e, f in some order. This leaves 1 and 3 for a and c.

Wishing to maximize, we try a = 3. Then c = 1, and the number so far is 3b1d5f . The condition of
ab being divisible by 2 is guaranteed, and so is the condition of abcdef being divisible by 6; we are
concerned about abc being divisible by 3 and abcd being divisible by 4. The first forces b = 2 and the
second forces d = 6, so the number is 321654.

7. The number N should be the largest power of 2 dividing 10!. By Legendre’s formula, the largest power

is

⌊
10

2

⌋
+

⌊
10

4

⌋
+

⌊
10

8

⌋
= 5 + 2 + 1 = 8, so N = 28. Thus 2x + y = 28, and we maximize x2y2, or(

x(28 − 2x)
)2

. The base is a quadratic with vertex at x = 26, with value 213, and its square is thus 226

8. Since P is divisible by all prime numbers less than 90, for P + n to have a prime factor less than 90, so
must n. All n < 90 work for trivial reasons, and so do 90, . . . , 96, failing at n = 97 since it is a prime.
Thus the largest N is 96.

Factors

1. The fifth largest divisor corresponds to the fifth smallest divisor upon division. 2,015,000,000 =
2015 · 106 = 5 · 13 · 31 · 26 · 56, and its smallest divisors are, in order, 1, 2, 4, 5, 8. Dividing the number by
23 leaves 5 · 13 · 31 · 23 · 56 = 251,875,000.

2. The even positive divisors of 1152 are precisely the positive divisors of 1152÷ 2 = 576 times two, so it
remains to find the sum of all its divisors. Since 576 = 2632, the well-known formula for the sum of
divisors gives

(
1 + 2 + · · ·+ 26

) (
1 + 3 + 32

)
=

(
27 − 1

)
(13) = 1651, multiplying by 2 gives 3302.

3. By the formula for the number of divisors, the number must either be a product of two primes or the
cube of a prime. The first three numbers are 6, 8, 10, and the fourth is 14.
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4. The power of 5 in the LHS is 2, which means that the power of 5 in the RHS is 2 as well, so y = 2.
Then power of 3 in the RHS is 2, so the power of 3 in the LHS, 2x, should equal to 2. Thus x = 1.

5. The highest power of 7 less than one million is 77, so there are 8 factors smaller than a million. The
rest of the 10,000 factors are larger, so there are 9992 such factors.

6. Factoring out 5x gives 5x (1 + 2 · 5) = 5x11. The number of factors formula gives (x + 1)2 = 2x + 2
factors.

7. Multiplying the two equations and taking the square root gives p = 22 · 53 · 72 · 11, which has
(2 + 1)(3 + 1)(2 + 1)(1 + 1) = 72 divisors.

8. For each factor of n2 less than n, dividing through n2 gives a corresponding factor greater than n. Thus
the number of factors of n2, minus one to account for n, divided by 2, gives the number of its factors
less than n. Then we subtract the number of factors of n.

In this case, n2 = 262338 which has (62 + 1)(38 + 1) = 2457 factors,
2457− 1

2
= 1228 of which are less

than n. The number n itself has (31 + 1)(19 + 1) = 640 factors, so subtracting gives 1228− 640 = 588
factors.

9. The number is 3003 + 1 = (300 + 1)(3002 − 300 + 1). The former, 301, factors as 7 · 43. The latter
factor is 3002 − 300 + 1 = 3002 + 600 + 1− 900 = (300 + 1)2 − 302 = (301− 30)(301 + 30), and both 271
and 331 are prime. The sum is 7 + 43 + 271 + 331 = 652.

10. Factor out 319 from the first two terms to leave 319 (3 + 1)− 12. Factor out 12 to leave 12
(
318− 1

)
,

which factors by repeatedly using difference of two squares and cubes as (3− 1)(32 + 3 + 1)(36 + 33 +
1)(3 + 1)(32 − 3 + 1)(36 − 33 + 1). After tedious checking, the factorization is 25 · 3 · 7 · 13 · 19 · 37 · 757.

11. The number 360,000 = 26 · 32 · 54 has (6 + 1)(2 + 1)(4 + 1) = 105 factors. Since the factors of 360,000

pair up, each of them multiplying to 360,000, and there being
105

2
pairs, the product of all the factors

is (360,000)

105

2 . Expanding,
(
26 · 32 · 54

)105

2 has sum of exponents
105

2
(6 + 2 + 4) = 630.

12. Suppose f(r) = 0 for some integer r, and then f(x) = (x− r)g(x) for some polynomial g(x). Let the
four integers be a, b, c, d. Substituting a gives f(a) = p = (a− r)g(a), so a− r is a factor of p. Similarly,
b− r, c− r, d− r are all factors of p. Since these are all distinct, they must be −p,−1, 1, p in some order.

Then, from above, f(−p + r) = p = (−p)g(−p + r) implies g(−p + r) = −1; similarly, f(p + r) = p =
pg(p + r), so g(p + r) = 1. However, it is well-known that a− b is a factor of f(a)− f(b); applying this
shows (p + r)− (−p + r) = 2p is a factor of 1− (−1) = 2, which is impossible.

Divisibility

1. Dividing gives
n + 3

n− 1
= 1 +

4

n− 1
, so we must have n− 1|4. Since 4 has factors −4,−2,−1, 1, 2, 4, the

number of possible values of n is the same, 6.

2. Dividing gives 2n2 − n + 1
31

3n + 1
. As 31 is a prime, 3n + 1 must equal either −31,−1, 1 or 31, which

happens only for integers n = 0, 10.

3. The greatest common factor of 74 − 1 = 25 · 3 · 52 and 114 − 1 = 24 · 3 · 5 · 61 is 24 · 3 · 5. We show that
all p4 − 1 are divisible by 24 · 3 · 5. Note that p4 − 1 = (p2 + 1)(p− 1)(p + 1).

Since p is odd, p2 + 1 is even, and p− 1, p+ 1 are consecutive even integers, so their product is divisible
by 8. When divided by 3, p gives a remainder of 1 or 2; in the former, 3|p− 1, in the latter, 3|p + 1.
Similarly, it is always divisible by 5, as 5|p− 1 and 5|p + 1 when it has remainder 1 or 4, and 5|p2 + 1
otherwise. The greatest common factor is thus 24 · 3 · 5 = 240.



3 compiled by Carl Joshua Quines

4. Rationalizing the denominator gives
2013ab− bc +

(
b2 − ac

)√
2013

2013b2 − c2
. For this to be rational, the

irrational part must be zero, so b2 = ac. Thus a, b, c are in geometric sequence. Rewrite a, b, c as
a, ar, ar2.

Then
a2 + b2 + c2

a + b + c
=

a2 + a2r2 + a2r4

a + ar + ar2
= a(r2 − r + 1) after long division. Similarly,

a3 − 2b3 + c3

a + b + c
=

a2(r4 − r3 − r + 1). These are both integers.

5. Multiply both sides by x + y and transpose to obtain xy − 1000x− 1000y = 0. Add 1,000,000 to both
sides and factor to get (x − 1000)(y − 1000) = 1,000,000. It is easy to rule out the case where both
factors in the LHS are negative: they cannot both be −1000, and one must be smaller than −1000,
meaning either x or y must be negative.

Thus both are positive, and each factor of 1,000,000 = 26 · 56 corresponds to one positive integer pair.
Since it has 6 + 1)(6 + 1) = 49 factors, then there are 49 pairs.

6. It is well-known that all primes greater than 3 are either 1 or −1 modulo 6. Note that a number that is
−1 modulo 6 cannot be divisible by 2 or 3. If none of its prime factors were −1 modulo 6, then all of
its prime factors are 1, and their product would be 1 as well, contradiction. Therefore there must be a
prime that is −1 modulo 6 that divides it.

Suppose finitely many primes existed that are −1 modulo 6; multiplying them and adding either 4 or 6
(depending on number of primes) produces a new number that is also −1 modulo 6. This number must
be composite, and by the above, divisible by a prime that is −1 modulo 6. But when divided by any
such prime, it leaves a remainder of either 4 or 6, contradiction.

Diophantine equations

1. Since both 2x and 100 are even, so is 5y, and thus y is even as well. Any even y produces an integer
solution, the ones that give positive solutions are y = 2, 4, . . . , 18. Thus there are 9 ordered pairs.

2. Since 23x + 53y = (2x + 5y) 22x − 2x · 5y + 52y = 189. The factors of 189 are 1 · 189, 3 · 63, 7 · 27, 9 · 21.
The only pair that works is 9 · 21, giving the only values x = 2, y = 1.

3. Adding twice the second equation to the first gives 5x = 56− 3a, and subtracting the second equation
from twice the first gives 5y = 4a− 13. Since 56− 3a and 4a− 13 are integers divisible by 5, their sum,
a + 43, is divisible by 5, so a is an integer as well, and it is 2 modulo 5. Both 56− 3a and 4a− 13 have
to be positive, so a is at least 4 and at most 18. The only integers in this range that are 2 modulo 5 are
7, 12, 17.

4. This is 2xy−2x+y = 43 and subtracting 1 to both sides completes the rectangle, giving (2x+1)(y−1) =
42. Then 2x + 1 is an odd factor of 42, so it is either 3, 7, 21, giving x = 1, 3, 10, with corresponding
y = 15, 7, 3. The largest x + y is thus 16.

5. Adding 1 to both sides in each equation completes the rectangle, making (a + 1)(b + 1) = 16, (b + 1)(c +
1) = 100, and (c + 1)(a + 1) = 400. Taking the product of all equations and its square root gives
(a + 1)(b + 1)(c + 1) = 800. Dividing with second equation gives a + 1 = 8, so a = 7. Similarly, b = 1
and c = 49.

6. Adding twice the first equation to the second gives 16x + 13y = 77, which has only one nonnegative
integer solution, x = 4, y = 1. Substituting to either equation gives z = 2.

7. Cheat: it must be constant. One such soution is (3,−4), and by/xc = −1. In fact, the rest of the
solutions are (3− 4k, 7k − 4) for integral k, and indeed by/xc = −1.

8. Dividing both sides by xyz gives xyz−1yz
x−1zx

y−1 = 3. One of x, y, z must be 3, so WLOG x = 3.
Then yz − 1 = 1, which only happens for y = 2 and z = 1, giving (3, 2, 1), which works, and so does its
cycles, giving 3 triples.
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9. Note that
15

2013
=

(
1− 1

x1

)
· · ·

(
1− 1

xn

)
≥

(
1− 1

2

)
· · ·

(
1− 1

n + 1

)
=

1

n + 1
, showing n ≥ 134.

To prove this is achievable, set x1, . . . , x133 to 2, . . . , 134 and x134 = 671. This gives us the value(
1− 1

2

)
· · ·

(
1− 1

134

)(
1− 1

671

)
=

1

134
· · · 670

671
=

15

2013
. The minimum value is thus 134.

Modulo

1. The highest power of 5 dividing 16 is, by Legendre’s,

⌊
16

5

⌋
= 3, so we take out 8 and three factors of 5

and compute modulo 100 the product 1 · 2 · 3 · 4 · 1 · 6 · 7 · 1 · 9 · 2 · 11 · 12 · 13 · 14 · 3 · 16 = 96.

2. (The remainder when divided by 5 should be 4.) Since n+ 5 ≡ 3 (mod 4), n ≡ 3− 5 ≡ −2 ≡ 2 (mod 4).
Similarly, n ≡ 0 (mod 5). We check 5, 10, 15 if any give a remainder of 2 when divided by 4, and 10
works. Then 10 + 6 ≡ 16 (mod 2)0, so the remainder is 16.

3. Note that n = 1 works, but we require it to be greater than one. By CRT, the solutions to any linear
system of moduli differ by the LCM of the moduli. The LCM of 3, 4, 5, 6 is 60, so the next solution is
1 + 60 = 61.

4. Taking modulo 11, by Fermat’s Little Theorem, we only need to consider the exponent modulo 10.
However, 5! ≡ 0 (mod 1)0, so by Fermat’s Little Theorem, 3!5!

··· ≡
(
3!10

)··· ≡ 1··· ≡ 1 (mod 11). The
remainder is 1.

5. Since 96 = 3 · 32, we take modulo 3 and modulo 32. Modulo 3 the expression is 115 − (−1)15 − 115 −
(−1)15 − 115 ≡ 1. Modulo 32, everything evaporates except for −115 ≡ −1. It is 1 modulo 3 and −1
modulo 32, combining both gives the expression as 31 modulo 96.

6. Since 7, 8, 9 are relatively prime, 739ABC is divisible by 504. It is 739000 + ABC ≡ 136 + ABC ≡ 0
(mod 504), giving only the choices ABC = 368, 872.

7. If p | ap, then p | ap | aq. Suppose p | aq and p - ap, then there exists some prime power rn such that
rn | p and rn - ap. Then rn | p | aq so r | a, and rn | an. However, since rn - ap, then p < n. Then
rp | rn | p, but this implies rp < p, contradiction.
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Ad hoc

1. The single-digit numbers account for 1 + 2 + · · ·+ 9 = 45 of the digits, the remaining 2015− 45 = 1970
digits are accounted for by two-digit numbers, which have two digits each. Thus we must have
2 (10 + 11 + · · ·+ n) ≤ 1970, the maximum value is n = 44. Thus the 1936th digit onwards is 454545 . . .,
so the 2015th is 5.

2. There are only four possible sets: {6, 1, 0} , {5, 2, 0} , {4, 3, 0} , {4, 2, 1}. Multiplying by 3! to account for
permutations gives 24.

3. A vertically arranged block is determined by its topmost letter, which can appear anywhere in the top
10× 12 part of the array, so there are 120 of them. Similarly, the horizontal blocks are determined by
its leftmost letter, anywhere among the left 10× 12 = 120 letters. Similarly for the diagonal blocks, but
for two 10× 10 blocks depending on its orientation. The total is 120 + 120 + 100 + 100 = 440.

4. The cardinalities are 1, 3, . . ., so we must have 1 + 3 + · · · + (2n − 1) ≤ 2009, which has the largest
possible value of n = 44. Thus 2009 appears in A45.

5. Each diagonal has 5 skew diagonals, and there are 12 diagonals. We divide by 2 for overcounting:
5× 12÷ 2 = 30.

6. Each number appears in 215 subsets, depending on whether each of the other 15 numbers appear or no.
Thus the sum is 215 (1 + 2 + · · ·+ 16) = 4456448.

7. The one-digit numbers take 9 digits and the two-digit numbers take 180 digits, so we stop at
2016− 189

3
+

99 = 708.

From 0 to 99, in the ones place the sum is 10(0 + 1 + · · · + 9) and in the tens place the sum is
10(0 + 1 + · · ·+ 9), so the total sum is 20(45) = 900. From 100 to 699, there are 6 0 to 99s and 100
occurences of 0 to 6 in the hundreds place, so 100(0 + 1 + · · ·+ 6) + 6(900) = 7500. Then 700, . . . , 708
have a sum of 99, so the total is 900 + 7500 + 99 = 8499.

8. On the main diagonal is 0, then above and below there are two diagonals, each with n− 1 1s, above
and below are two diagonals, each with n− 2 2s, etc. The summation is

∑
2(n− i)i from i = 1 to n, or

2
(
n
∑
i−
∑
i2
)

=
1

3
n3 − 1

3
n. Thus n3 − n = 7980, and we observe that only n = 20 works.

9. The first digit has to be 1, then onwards, the digits have to be either 0 or 9. The only choices are

1999, 1099, 1009, 1000, and the smallest is
1099

19
.

10. Burnside’s, or bloody casework. We do casework on the number of white vertices. For 0 or 1 white
vertices there is clearly one different way each. For 2 white vertices there are three ways: both connected
by an edge, both on the same face but not adjacent, and on opposite vertices. For 3 white vertices
there are four ways, all on the same face, all on opposite vertices, and two when two are connected. For
4 white vertices there are six ways: all on the same face, four where three share the same face, and one
with two pairs opposite each other.

The 5, 6, 7, 8 white vertices are analogous to there being 3, 2, 1, 0 black vertices, so there are the same
number of ways. That makes a total of 1 + 1 + 3 + 4 + 6 + 4 + 3 + 1 + 1 = 24.
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Inclusion-Exclusion

1. Of the 100 people, 60 claim to be good, so 100− 60 = 40 deny to be good. Of these, 30 correctly deny,
so the rest must be people who are good at math but refuse to admit it: 40− 30 = 10.

2. There are

⌊
2015

3

⌋
= 671 numbers less than 2015 divisible by 3. Of these,

⌊
671

5

⌋
= 134 are divisible

by 5 and

⌊
671

7

⌋
= 95 are divisible by 7, with

⌊
671

35

⌋
= 19 divisible by 35. By PIE, the answer is

671− 134− 95 + 19 = 461.

3. This is φ(10000)− 1 = 10000

(
1− 1

2

)(
1− 1

5

)
− 1 = 3999.

4. There are 638 numbers divisible by 3, 239 divisible by 8, 79 divisible by 24, and 319 divisible by 6 in
the range [100, 2015]. The answer is 638 + 239− 79− 319 = 479.

5. By PIE:

⌊
999

10

⌋
+

⌊
999

15

⌋
+

⌊
999

35

⌋
+

⌊
999

55

⌋
−
⌊

999

30

⌋
−
⌊

999

70

⌋
−
⌊

999

110

⌋
−
⌊

999

105

⌋
−
⌊

999

165

⌋
−
⌊

999

385

⌋
+⌊

999

210

⌋
+

⌊
999

330

⌋
+

⌊
999

770

⌋
= 146.

Permutations

1. Casework: only 100 has a sum of 1 and 999 has a sum of 27. By balls and urns, there are
(
10
8

)
= 45

that sum to 8, except 9 of these start with 0. The sum is 1 + 1 + 45− 9 = 38.

2. There are
10!

2!
permutations, since I is repeated. Except we overcount: we want to consider only AIIU

out of its
4!

2!
= 12 possible permutations. So we divide by 12. This gives

10!

12 · 2!
= 151200.

3. In a line, this is 2×6!×6! – pick either girl or boy to go first and alternate, then multiply by the number
of ways to permute per gender. Divide by 12 to account for rotation in a circle: 2× 6!× 6!÷ 12 = 86400.

4. There are
7!

2!
= 2520 permutations since A is repeated. However, we want to consider only AEA out of

its 3 permutations, so divide by 3 to get 840.

5. Since 33750 = 2 · 33 · 54, we split to four cases: all prime numbers, which is
8!

4!3!
= 280, one of them is 6,

which is
7!

4!2!
= 105, one of them is 9, which is

7!

4!
= 210, and when both 6 and 9 are present,

6!

4!
= 30.

The sum is 280 + 105 + 210 + 30 = 625.

6. There are 4! starting with A, 4! with M, 4! with R, a total of 72. Then 3! start with SA, a total of 78.
The first starting with SM is SMART, so that must be the 79th.

7. There are
7!

2!2!2!
= 630 ways without restriction. There are

5!

2!
= 60 ways where PHI appears and

also
5!

2!
= 60 ways where ILL appears. For strings with both PHI and ILL, it can be either as

PHILL, I, P which is 3! = 6 ways, or as PHI, ILL and P for another 3! = 6 ways. By PIE, there are
630− 60− 60 + 6 + 6 = 522 ways.

8. We use PIE. There are
6!

2!2!2!
= 90 ways to arrange MURMUR. By symmetry, when two Ms, Us, or Rs are

together, there are
5!

2!2!
= 30 ways. Similarly, if two pairs of letters are together, there are

4!

2!
= 12 ways.

Finally there are 3! ways when each pair is together. By PIE, there are 90−30−30−30+12+12+12−6 =
30 ways.
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Combinations

1. There are 2n subsets, 1 with no elements and n with one element. Thus 2n − n− 1 = 57, which only
has the solution n = 6.

2. One of the numbers chosen has to be 7, another has to be either 3, 6 or 9, the last number can be
anything. This gives 1 · 3 · 7 = 21, but we overcounted when the last number is also divisible by 3, which
happens 6 ways, when we only want to count it 3 times. So 21− 6 + 3 = 18.

3. Order the boys arbitrarily, then there are 6! = 720 ways to arrange the girls to form pairs.

Balls and urns

1. Let Amy, Bob and Charlie receive a, b, c cookies respectively; we have a+b+c = 15, or (a−4)+b+c = 11.
Now each of a− 4, b, c are positive integers, so this is balls and urns. There are 10 slots in between and
we pick 2 of them, so

(
10
2

)
= 45 ways.

2. Balls and urns directly:
(
12
2

)
= 66.

3. Consider (x− 1000) + (y − 600) + (z − 400) = 16, where each variable is now a positive integer, so by
balls and urns there are

(
15
2

)
= 105 ways.

4. Consider the 6 integers that are left. You are placing four integers such that no two are adjacent, so
you have to place them in-between, in front, or behind the 6 integers, giving 7 slots. Each slot can only
go to one integer so no two are adjacent, giving

(
7
4

)
= 35 ways.

5. Consider the 7 books that are left. You are placing 5 books so that no two of them are adjacent, so you
have to place them in-between, in front, or behind the 7 books, giving 8 slots. Each slot can only go to
one book so no two are adjacent, so that’s

(
8
5

)
= 56 ways.

6. Similar as above, there are
(
8
5

)
= 56 ways in a row. However, we overcount: we don’t want to count the(

6
3

)
= 20 ways when a book is placed in front and behind. This is 56− 20 = 36 ways.

7. Bloody casework on a+ b. When a+ b = 0, there is 1 solution for (a, b). Then either c+ d+ e = 0,
with

(
2
2

)
solutions, c+ d+ e = 1 with

(
3
2

)
solutions, etc., up to c+ d+ e = 4 with

(
6
2

)
solutions, all by

balls and urns. This is thus
(
2
2

)
+
(
3
2

)
+ · · ·+

(
6
2

)
=
(
7
3

)
= 35.

Similarly, a + b = 1 has
(
2
1

)
= 2 solutions, and the hockeystick sum is

(
2
2

)
+ · · ·+

(
5
2

)
=
(
6
3

)
= 20, so

there are 2× 20 = 40 ways. When a+ b = 2 then the sum is
(
3
1

)
×
((

2
2

)
+ · · ·+

(
4
2

))
= 30. The sum of

all cases is 105.
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Equations

1. 2/3 of the work needs to be completed in 12 days, so multiplying the amount of work by 2 doubles the
men, and multiplying the amount of days by 2/3 multiplies the amount of men by 3/2. There should
be 180 men to do the work, so there should be 180− 60 = 120 more workers.

2. Either 2 − x2 = 1 or x2 − 3
√

2x + 4 = 0. The former when x = ±1, the latter when x =
√

2, 2
√

2.
However,

√
2 makes the base zero and thus undefined. The solutions are x = −1, 1, 2

√
2.

3. This is a linear equation, and by inspection x = a+ b+ c satisfies, so it must be the only solution.

4. Observe that
(√

2014 +
√

2013
)− tan2 x

=

(
1√

2014 +
√

2013

)tan2 x

=
(√

2014−
√

2013
)tan2 x

after ra-

tionalizing the denominator. Equating the exponents gives tan2 x = 3, which is satisfied by x =
π

3
,

2π

3
.

5. Cross-multiplying and simplifying shows x =
2m− 6

m− 5
, which has its denominator is zero, or when

x = 2, 6. This happens when m = 5, 6.

6. Let u = 2015x and note that 2015−x =
1

u
. Cross-multiplying and solving for u yields

√
1− 3k

4− k
. The

fraction has to be positive, which happens when k <
1

3
or k > 4.

7. Observe x + 3 − 4
√
x− 1 =

(√
x− 1−

√
4
)2

and x + 8 − 6
√
x− 1 =

(√
x− 1−

√
9
)2

, so the LHS is∣∣√x− 1− 2
∣∣ +

∣∣√x− 1− 3
∣∣. There are three cases:

√
x− 1 ≥ 3,

√
x− 1 ≤ 2, and 2 ≤

√
x− 1 ≤ 3.

Solving each case and taking the union gives any x ∈ [5, 10] works.

8. Let u =
√

2 − 1. Observe that
1

u
=

1√
2− 1

=
√

2 + 1 upon rationalizing the denominator. Then

ux + 8u−x = 9, or multiplying both sides by ux, u2x + 8 = 9ux. This is quadratic in ux, with solutions
1 and 8. Now ux = 1, 8 yields x = 0, logu 8 or log√2−1 8.

Systems of equations

1. Taking the product of all equations and taking the cube root gives wxyz = 30. Dividing by the third

and last equations gives y =
2

3
and w =

5

2
. Thus w + y =

19

6
.

2. The first equation is 2xy−x+y−6 = 0, the second is xy+x−y−2 = 0. Adding the two equations gives

xy =
8

3
, or y =

8

3x
. Substituting in either equation and solving for x and y gives

(
−2,−4

3

)
,

(
4

3
, 2

)
.

3. Let u =
√
x+ y. From (x− y)(x+ y) = 9 we get

√
x− y =

3

u
, substituting in the first equation gives

u+
3

u
= 4 or u2 − 4u+ 3 = 0 which has positive solution u = 1. Thus x+ y = 1 and x− y = 9; adding

and subtracting gives (a, b) = (5,−4). Then
ab

a+ b
= −20.

4. Subtracting the first from second equation gives 3w + 5x + 7y + 9z = 1 and the second from third
equation gives 5w + 7x+ 9y + 11z = 5. Subtracting these two from each other and dividing by 2 gives
w + x+ y + z = 2.
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5. Dividing both sides of the first equation by 4xy gives
1

x
+

1

y
=

1

2
. Similarly,

1

y
+

1

z
=

1

4
and

1

z
+

1

x
=

1

8
.

Adding all the equations and dividing by 2 gives
1

x
+

1

y
+

1

z
=

7

16
, subtracting the second equation

gives
1

x
=

3

16
, so x =

16

3
.

Complex numbers

1. The polynomial factors as (x+ 1)(x2 + 1) = 0 with roots −1, i,−i. Else, multiply both sides by x− 1
to get x4 = 1, the roots are the fourth roots of unity except for 1, so −1, i,−i.

2. Since i4 = 1, then
1

i
· i

3

i3
= i3 = −i. Similarly, the sum becomes (1− i− 1 + i+ · · ·), with the

pattern repeating. However, 1 − i − 1 + i = 0, so every four terms cancel out, until
1

i2012
, leaving

(1− i− 1)
2

= −1.

3. This is 1 +
2

z4 − 1
=

i√
3

, and thus z4 = −1

2
− i
√

3

2
= cis 240◦. By de Moivre’s, z = cis 60◦, cis 150◦,

cis 240◦, cis 330◦. Written out, z =
1

2
+
i
√

3

2
,−
√

3

2
+
i

2
,−1

2
− i
√

3

2
,

√
3

2
− i

2
.

4. Since z 6= 1, we have z2 + z + 1 = 0. Dividing both sides by z shows z + 1 +
1

z
= 0, adding three to

both sides shows z +
1

z
+ 4 = 3.

Polynomials

1. We P (−7) = a(−7)7 + b(−7)3 + c(−7) − 5, or 7 + 5 = −a(77) − b(73) − c(7). Then P (7) = a(77) +
b(73) + c(7)− 5 = −(7 + 5)− 5 = −17.

2. By Vieta’s, making a mistake in the constant term means the sum of the roots is conserved, similarly
making a mistake in the linear term means the product of the roots is conserved. The sum of the roots
is 10 and the product is 9, meaning one such original equation can be x2 − 10x+ 9 = 0.

3. If the roots are r, s, the distance of the roots is p = |r − s|. This is hard to work with, so we square the

distance instead: p2 = (r − s)2. We can rewrite this in terms of the sum and product: p2 = (r + s)
2−4rs,

and then in terms of the coefficients using Vieta’s: p2 =

(
b

a

)2

− 4c

a
.

Turning p→ 2p makes p2 → 4p2, which is 4p2 = 4

(
b

a

)2

− 16c

a
. We also want to write this in terms of

a shift in c, from the original. Suppose the roots are translated k downward, then c→ c− k, making

4p2 =

(
b

a

)2

− 4 (c− k)

a
. Equating and solving gives k =

3b2

4a
− 3c.

4. The discriminant should be less than zero, which is (4p)2 − 4(4)(1− q2) < 0, or p2 + q2 < 1. This is a

circle of area π over a square of area 4, so the probability is
π

4
.

5. We can form x5 through (x)(x2)2 or (x)3(x2). The former term is
(

4
1,1,2

)
(2)1(−x)1(x2)2 = − 4!

1!1!2!
2x5 =

−24x5. The latter term is
(

4
0,3,1

)
(2)0(−x)3(x2)1 = −4x5, and their sum gives the coefficient −28.

6. Consider Q(x) = P (x)− 3, which is a degree-four polynomial that attains its maximum value of 0 at
x = 2, x = 3. Thus 2 and 3 are both roots, and since they are maximums, they should have multiplicity 2.
Thus Q(x) = a(x−2)2(x−3)2 for some constant a, since it is quartic. Then P (x) = a(x−2)2(x−3)2 +3

and plugging in x = 1 gives a = −3

4
. Finally P (5) = −24.
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7. Plugging in x = 1 gives 52009 − 52009 = 0, the sum of the coefficients. Plugging in x = −1 gives
12009 + 12009 = 2, which is the difference between the coefficients of terms with even exponents and
coefficients of terms with odd exponents. So subtracting them will cancel out the terms with even

exponents, and dividing by two gives the answer:
0− 2

2
= −1.

8. Treating this is (x+ (y + z))
2015

+ (x− (y + z)
2015

and expanding by the binomial theorem cancels out

the terms with odd (y + z) exponent, leaving 2x2015 + 2
(
2015
2

)
x2014 (y + z)

2
+ · · ·+ 2

(
2015
2014

)
x (y + z)

2014
.

The first term has 1 term, the second term has 3 terms, etc.; none of these terms combine because they
have different powers of x. All in all, there are 1 + 3 + · · ·+ 2015 = 1016064 terms.

Polynomial factors

1. Since x2 − x− 2 = (x− 2)(x+ 1) and it divides ax4 + bx2 + 1, it must have 2 and −1 as roots. Thus

16a+ 4b+ 1 = a+ b+ 1 = 0. Solving yields a = −1

4
and b = −3

4
.

2. The remaining factor must be x2 + cx+ d for some c, d. Multiplying out gives x4 + (2 + c)x3 + (2c+
d+ 5)x2 + (5c+ 2d)x+ 5d. Equating the cubic and linear coefficients shows 2 + c = 0 and 5c+ 2d = 0,
so c = −2 and d = 5. Then a = 6 and b = 25, so a+ b = 31.

Alternatively, note that since x4 + ax2 + b can be rewritten as
(
x2 − h

)2 − k, which is likely to be

a difference of two squares. We guess it as
(
(x2 + 5) + 2x

) (
(x2 + 5)− 2x

)
, which gives the product(

x2 + 5
)2 − 4x2, which fits the form. Substituting 1 gives the sum of the coefficients, 62 − 4 = 32, and

subtracting the leading coefficient 1 gives the answer 31.

3. From a3 + b3 + c3 = 3abc if a+ b+ c = 0, we have (r − s)3 + (s− t)3 + (t− r)3 = 3(r − s)(s− t)(t− r).
Alternatively, use the factor theorem by substituting r = s, to get r − s is a factor, etc.

4. By the fundamental theorem of algebra, x2015 + 18 = (x− r1)(x− r2) · · · (x− r2015) for some complex
roots r1, . . . , r2015. Any combination of linear factors produces a factor of x2015 + 18.

Since each linear factor either appears or does not appear in the factor, there are 22015 factors. However,
we overcounted since one of them is where none of the linear factors appear, so there are 22015 − 1
factors.

5. Substituting x = 5 gives p(4) = 0. Then substituting x = 4, 3, 2, 1 in turn gives p(3) = p(2) = p(1) =
p(0) = 0. Thus the polynomial p(x) = x(x − 1)(x − 2)(x − 3)(x − 4)q(x) for some polynomial q.
Substituting p(x) in the original gives q(x− 1) = q(x), so q(x) is constant. Substituting x = 6 gives the

constant
1

6
, so only p(x) =

1

6
x(x− 1)(x− 2)(x− 3)(x− 4) works.

Remainder theorem

1. By the remainder theorem, P (r) = 2. The division algorithm says P (x) = (2x2 + 7x− 4)(x− r)Q(x) +(
−2x2 − 3x+ 4

)
. Substituting r gives P (r) = 2 = −2r2 − 3r + 4, which has the solutions r = −2,

1

2
.

2. By the remainder theorem, f

(
−3

2

)
= 4 and f

(
−4

3

)
= 5. By the division algorithm, f(x) =

(2x + 3)(3x + 4)Q(x) + R(x), and R(x) is a linear polynomial. Substituing x = −3

2
,−4

3
gives

R

(
−3

2

)
= 4 and R

(
−4

3

)
= 5, which is the line R(x) = 6x+ 13.

3. By a similar solution as above, the remainder is R(x) = −x+ 118.
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Root-finding

1. We solve the equation 2x4 − 7x3 + 2x2 + 7x+ 2 = 0. Dividing both sides by x2 and grouping terms

gives 2

(
x2 +

1

x2

)
− 7

(
x− 1

x

)
+ 2 = 0. Letting u = x− 1

x
, observe u2 = x2 − 2 +

1

x2
; substituting in

gives 2
(
u2 + 2

)
− 7u+ 2 = 0. This has roots u =

3

2
, 2.

The roots of x − 1

x
=

3

2
are −1

2
and 2, while the roots of x − 1

x
= 2 are 1 −

√
2 and 1 +

√
2. The

smallest root is −1

2
and the largest is 1 +

√
2, and their difference is

3

2
+
√

2.

2. For the polynomial to have equal roots, the discriminant must be zero. Thus (2(1 + 3m))
2 − 4(7)(3 +

2m) = 0, or 4(m− 2)(9m+ 10) = 0, giving m = −10

9
, 2. Substituting either shows that the equal root

is 7.

Alternatively, if the root is r, the polynomial must be (x− r)2 = x2 − 2rx+ r2. Equating coefficients

gives r = 1 + 3m and r2 = 7(3 + 2m). Then (1 + 3m)
2

= 7(3 + 2m), again giving m = −10

9
, 2, showing

that r = 7.

3. The polynomial factors as f(x− 5) = −3(x− 3)(x− 12). Substituting x = 3, 12 shows that f(−2) =
f(7) = 0, so its roots are −2, 7.

4. Suppose the roots are a− d, a, a+ d. By Vieta’s, the sum of the roots 3a = 6p, so a = 2p, and our roots
are 2p− d, 2p and 2p+ d. Using Vieta’s on the linear and constant terms gives −44 = p(4p2 − d2) and

5p = 12p2 − d2. Solving for d and equating, we get 4p2 +
44

p
= 12p2 − 5p, or 8p3 − 5p2 − 44 = 0. This

factors as (p− 2)(8p2 + 11p+ 22) = 0, and the only real root is p = 2.

5. By Vieta’s, we know the sum of the roots is zero. Let the roots be a, a,−2a. The product of the roots
is −2a3 = 128, so a = −4. Then the sum of the pairwise products of the roots is k = a2 − 2a2 − 2a2 =
−3a2 = −48.

6. By Vieta’s, the product of the roots is 2, so let the roots be p, p,
2

p2
. Then the sum of pairwise products

is −3 = p2 +
2

p
+

2

p
, or p3 + 3p + 4 = 0, which has the only real root p = −1. Thus the roots are

−1,−1, 2 and a = −(−1− 1 + 2) = 0.

Vieta’s

1. If the number is x, then x− 1

x
= 2, or x2 − 2x− 1 = 0. By Vieta’s, their product is −1.

2. WLOG the leading coefficient of the polynomial is one. Then f(x) = x2016 − Sx2015 + · · · , so

f(2x − 3) = (2x− 3)
2016 − S (2x− 3)

2015
+ · · · . Expanding and looking at the first two terms gives

(2x)2016 − 2016(2x)2015(−3) − S(2x)2015 + · · · , or 22016x2016 −
(
2016 · 22015 · 3 + S · 22015

)
x2015. By

Vieta’s, the new sum of the roots is
S + 2016 · 3

2
=

1

2
S + 3024.

Alternatively, f(x) factors as (x−r1) · · · (x−r2016) for its roots. Then f(2x−3) = (2x−3−r1) · · · (2x−
3 − r2016), which has roots x =

r1 + 3

2
,
r2 + 3

2
, . . . ,

r2016 + 3

2
. The new sum of the roots is then

1

2
S + 3024.

3. Suppose the roots are r and s. Then |r − s| = 75, and squaring both sides gives (r − s)2 = 752, or

r2 − 2rs+ s2 = (r + s)
2 − 4rs = 752. By Vieta’s, r + s = 51 and so rs = −752 − 512

4
= −756. Then

r2 + s2 = (r + s)
2 − 2rs = 4113.
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4. Suppose the roots are r and s. Then r + s = −4 and rs = 8 by Vieta’s. The sum of the reciprocals of

the roots is
1

r
+

1

s
=
r + s

rs
= −1

2
, and the product of the reciprocals is

1

r
· 1

s
=

1

8
. One such quadratic

polynomial is thus x2 +
1

2
x +

1

8
by Vieta’s, to make its coefficients integral we multiply by 8 to get

8x2 + 4x+ 1 = 0.

Alternatively, the transformation x→ 1

x
makes the new polynomial have roots as reciprocals, giving

1

x2
+

4

x
+ 8 = 0. Multiplying by x2 gives 8x2 + 4x+ 1 = 0.

5. If the roots are a, b, c, d, then
1

a
+

1

b
+

1

c
+

1

d
=
abc+ abd+ acd+ bcd

abcd
. By Vieta’s, this is

− 2
4
−6
4

=
1

3
.

Alternatively, the substitution x→ 1

x
changes the roots to their reciprocals. The new polynomial is

4

x4
− 3

x3
− 1

x2
+

2

x
− 6 = 0; multiplying both sides by x4 gives 4− 3x− x2 + 2x3 − 6x4 = 0. The sum

of the roots is − 2

−6
=

1

3
.

6. Both roots are real, so b2 ≥ 4c. In order to maximize c, we must have equality: let b2 = 4c. We want to

minimize b+ c = b+
b2

4
=

(
b

2
+ 1

)2

− 1 ≥ 1, which attains its minimum when b = −2.

7. Note that x3 − 4x+ 1 = 0 implies that each root satisfies x3 + 1 = 4x. Substituting in the denominator

and cancelling makes the sum
3abc

4
, which by Vieta’s is −3

4
.

Coordinate plane

1. The first equation is two intersecting lines: y = x and y = −x. The second equation is a circle of
radius zero centered at (a, 0), so it only consists of that point. Intersecting the line y = 0 with the first
equation gives x = 0, so the only value of a is a = 0.

2. The focus of y = ax2 is

(
0,

1

4a

)
, so the focus of y = x2 − 1 is

(
0,

1

4

)
shifted downward by one unit

to

(
0,−3

4

)
. Similarly, its vertex (0, 0) is shifted downward to (0,−1). We can rotate clockwise to(

−1

4
,−3

4

)
.

3. Since the parabola points upward, there must be either one or no intersections of the parabola with the
line. Substituting y = −12x+ 5 to y = x2 − 2px+ p+ 1 gives x2 − (2p− 12)x+ (p− 4) = 0, and since
it has at most one real root, its discriminant must be nonpositive. Thus (2p+ 12)2 − 4(p− 4) ≤ 0, or
(p− 5)(p− 8) ≤ 0, which has solutions p ∈ [5, 8].

4. Since the two circles are congruent, the two points of intersection must pass through the perpendicular
bisector of their centers, (0, 0) and (16, 16). This perpendicular bisector is x+ y = 16. Since (a, b) and
(c, d) lie on this line, a+ b = 16 and c+ d = 16, so a+ b+ c+ d = 32.

5. The locus of points with PA + PB = 10 is an ellipse, the locus of point with |PC − PD| = 6 is a
hyperbola. The top-most point of the ellipse is (0, 4) and the bottom-most point of the hyperbola is
(0, 3), so the upper arm of the hyperbola intersects it in two points. By symmmetry, so does the lower
arm. Then there are 4 points satisfying both.

6. The line passes through P (0, 5) and is tangent to the circle with center O(0, 0) and radius 3. The point
of tangency is Q, and since ∠PQO = 90◦ due to tangency, PQO is a 3− 4− 5 right triangle.
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We want to find the slope of PQ. Drop the perpendicular from Q to PO at point R, then the slope is
PR

RQ
, since it is rise over run. By similarity,

PR

RQ
=
PQ

QO
=

4

3
.

7. Divide the plane in quadrants. We only need to consider x > −15, so this produces four equations:

x+ y =
1

4
(x+ 15) in quadrant I, −x+ y =

1

4
(x+ 15) in quadrant II, −x− y =

1

4
(x+ 15) in quadrant

III, and x− y =
1

4
(x+ 15) in quadrant IV.

This produces a kite with vertices at the intercepts: (5, 0),

(
0,

15

4

)
, (−3, 0) and

(
0,−15

4

)
. Thus its

area is 30.

8. Suppose y = m(x− 1). Substituting to the curve 4x2 − y2 − 8x = 12 gives (4−m2)x2 + (2m2 − 8)x−
(m2 + 12) = 0. Since this should not have a solution, its discriminant should not be positive. Its
discriminant is (2m2 − 8)2 − 4(4 −m2)(m2 + 12) = 16(4 −m2), which is positive when m < 2. The
least positive m is 2, making the line y = 2(x− 1).

9. Let A(−2, 1), B(2, 5) and C(5, 2). After either finding the side lengths or looking at the slopes, we
notice that ∠ABC = 90◦. The incenter must lie on the angle bisector of ∠ABC, which is a vertical
line, so the incenter must be (2, h) for some h. Since it is a right triangle, we can find its inradius using

the formula
a+ b− c

2
=
√

2.

This means the equation of the circle is (x− 2)2 + (y − h)2 = 2 for some h. Intersecting it with line
BC should only produce one intersection, since it is tangent. Line BC is y = 7− x, substituting gives
2x2 + (2h− 18)x+ (h2 − 14h+ 51) = 0, with discriminant −4(h− 3)(h− 7). There should only be one
solution, so the discriminant should be zero: we reject h = 7 because it is above the triangle. Thus the
circle is (x− 2)2 + (y − 3)2 = 2.

10. Reflecting the point about the x-axis gives P (−3,−7); the problem is now to find the shortest path
from that point to the circle with center O(5, 8). The segment PO intersects the circle at Q, the
shortest path has to be PQ. Then since QO is a radius and has length 5, we have PQ = PO −QO =√

(−3− 5)2 + (−7− 8)2 − 5 = 12.
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Random variable

1. Count: 10 has {6, 3, 1} , {6, 2, 2} , {5, 4, 1} , {5, 3, 2} , {4, 4, 2} , {4, 3, 3}, multiplying by the number of

permutations gives 27. There are 63 tuples, so
27

216
=

1

8
.

2. Consider all 63 tuples of dice rolls. There are 33 = 27 with numbers from 1 to 3, but of these, 23 = 8

have no threes, leaving 27− 8 = 19 with the greatest being 3. Thus the probability is
19

216
.

3. Sherlock wins if and only if the sequence is TTT, with probability
1

8
, and cannot win otherwise. Since

the game must terminate, Mycroft wins with probability
7

8
, and thus Mycroft has a higher probability

of winning.

4. Let the probability of obtaining F be f . The probability of obtaining the side opposite F is thus
1

6
− f .

So getting a sum of 13 has probability 2f

(
1

6
− f

)
+ 10 · 1

12
· 1

12
=

29

384
; solving the quadratic equation

gives f =
1

48
,

7

48
. Since f >

1

12
, then the probability is

7

48
.

Random selection

1. Each of the 26− 1 = 63 possible subsets of six colors are equally likely, and only 1 uses only her favorite

color; the probability is
1

63
.

2. There is one cube with no red sides, 6 cubes with one red side, 12 cubes with two red sides and 8 cubes

with three. A cube with one red side has
1

6
probability, etc., so the probability is

6

27
· 1
6

+
12

27

1

3
+

8

27

1

2
=

1

3
.

3. Modulo 2, the tuples (a, b, c) = (0, 0, 0), (0, 1, 0), (1, 0, 0) and (1, 1, 1) work. Since there is an equal

probability of being either odd or even, then the probability is
4

23
=

1

2
.

4. The probability of getting a different color and a different number is
8

14
, since among the 14 chips left

10 are of different colors but 2 have the same number. So the probability is 1− 8

14
=

3

7
.

5. We count the number that does not contain any 2s. Replace 5000 with 0000. The thousands digit can be
anything from 0 to 4, the hundreds to ones digit can be 0 to 9, except 2. This gives 4× 9× 9× 9 = 2916,

so the probability is
2916

5000
=

729

1250
.

6. Use casework, or be witty: equivalent to Josh just picking two chips from all together without replacement.
This is because, suppose we permute the six chips in a row, with the first three going to urn 1, and
the second three going to urn 2, and Josh picked the first and fourth chips, which is equivalent. The

probability both are red is
4

6
· 3

5
=

2

5
.
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7. The first draw must not all be red or not all be green. It is all red with probability
3

6
· 2

5
· 1

4
=

1

20
,

and by symmetry all green with probability
1

20
. The first draw is not all red and not all green with

probability 1− 1

20
− 1

20
=

9

10
.

The bag now has one of one color, two of the other color, and three white, so the probability they are

all different in the second draw is
1 · 2 · 3(

6
3

) =
3

10
. The product is

27

100
.

8. There are
(
23
3

)
= 1771 ways to pick three non-adjacent people in a row of 25, subtract the 21 ways in

which the front and back people are placed, for a total of 1750 ways. There are
(
25
3

)
= 2300 ways to

pick three people randomly, so the probability is 1− 1750

2300
=

11

46
.

9. Induction on k. Base case is 1− 1

3
− 2

3
=

2

3
, as wanted. Suppose k = n− 1 is true, then there are two

cases: when the sum to n− 1 is even and when the sum to n− 1 is odd.

For the former, the probability this happens is
1

2
+

1

2 · 3n−1
by inductive hypothesis; for the whole sum

to be even, anbn has to be even too, with probability
2

3
. The whole probability for this case is thus

2

3

(
1

2
+

1

2 · 3n−1

)
.

Similarly, the probability for the other case is
1

3

(
1

2
− 1

2 · 3n−1

)
. Taking their sum and simplifying

yields the expression we want.

Geometric probability

1. Suppose the AB has length `. Then
AP

`−AP
< r so AP <

r`

r + 1
. The segment of success has length

r`

r + 1
divided by the whole segment with length `, giving the probability

r

r + 1
.

2. Scale by 1/5000. Let the prices of the gifts be x, y pesos. Then the region of the plane is the square with
0 ≤ x, y ≤ 5 and we must have x + y ≤ 9. The failure region is x + y > 9, which intersects the square

at the triangle with vertices (4, 5), (5, 5) and (5, 4). Its area is
1

2
. The whole area of consideration is 25,

so the probability is 1−
1
2

25
=

49

50
.

3. Factoring, x2 − 3xy + 2y2 > 0 if x > y or x < 2y. Intersecting with the square 0 ≤ x, y ≤ 1 produces a

region with area
3

4
; since the area of the square is 1, the probability is

3

4
.

4. The intervals where the sum is 5 are when the first number is (0.5, 1), (1.5, 2), (2.5, 3) and (3.5, 4). Each

interval has length 0.5 and the whole interval has length 4.5, so the probability is
4 · 0.5

4.5
=

4

9
.

Existence combinatorics

1. By PHP two of them are the same modulo 6 and thus have a difference that is zero, so probability 1.

2. Modulo 2 the points are (0, 0), (0, 1), (1, 0) or (1, 1), by PHP two points are the same modulo 2 and
thus have a midpoint with integer coordinates, so probability 1.

3. For the former, consider a regular pentagon: by PHP three of them are the same color and form an
isosceles triangle. For the latter, color half the circle red and the other half blue, no such equilateral
triangle exists.
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4. Modulo 3, the number of blue, red, and yellow chips cycles (1, 2, 0) → (0, 1, 2) → (2, 0, 1) → (1, 2, 0).
All the chips being the same color is (2, 2, 2), which is impossible.

5. For n = 1005 the sequence 0, 1, 2, . . . , 1004 trivially does not have two whose sum or difference is
divisible by 2009. For n = 1006, consider modulo 2009, if no two have a difference that is 0 then they
must all be distinct, but by PHP one of {0} , {−1, 1} , {−2, 2} , . . . , {−1004, 1004} has two, which then
have a sum divisible by 2009.

6. The sequence 1 to 20112011 has at least 2012 prime numbers since 17489 < 20112011. Then all numbers
from

(
20112011 + 1

)
! + 2 to

(
20112011 + 1

)
! + 20112011 + 1 are composite. Now move the left endpoint

one upward and the right endpoint one upward: either the number of primes is increased by 1, decreased
by 1, or stays the same. Since it starts from ≥ 2012 and eventually becomes 0, it will hit 2011 some
time.

7. Let A be the set {1, 2, . . . , n} and B be the set {n + 1, . . . , 2n}. Since the numbers are arranged on a
circle, there are two adjacent points from opposite sets, join them with a chord. Remove them from
the circle and keep connecting points with chords in this manner, you end up with n non-intersecting
chords. The sum is the sum of all the elements in set B minus the sum of all the elements in set A,
which is n2.

8. Consider a matrix with 120 rows and 10 columns, and write a 1 on each entry if the student corresponding
to the row does not follow the celebrity for that column. Suppose that the hypothesis is not true, that
is, each pair of students has at least one celebrity that both do not follow. This translates to each pair
of rows having a column where both are 1.

We count the number of pairs of 1s in each column. Vertically, since each column has at most
120− 85 = 35 ones, the sum is at most 10

(
35
2

)
= 5950. Horizontally, each of the

(
120
2

)
pairs of rows has

at least one pair of 1s, so the sum is at least 7140. Contradiction.
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Circles

1. Let the centers of the circles be A,B, one internal tangent be CD tangent to circle A at C, and to
circle B at D, and let E be the intersection of the two tangents.

Since ∠E is right, and ∠C is right as well, then ACE must be an isosceles right triangle. Thus AE,BE
are 4

√
2 and 2

√
2, so AB is 6

√
2.

2. Since ∠QPR + ∠QSR = 180◦ then quadrilateral PQRS is cyclic, so C1 and C2 are the same circle,
and they intersect at infinitely many points.

3. Drop the perpendicular from C to AB at point D. Then CD = 5, and CB = 13, so by Pythagorean,
DB = 12. Similarly, AD = 12, so the perimeter is 12 + 12 + 13 + 13 = 50.

4. Extend CB to meet the circle again at F . By power of a point, we get CF = 12, and so AF = 5. By
Stewart’s on triangle OBF we find OB = BF = 2

√
6. Pythagorean on OCD gives OC = 2

√
15.

5. Let C2 have center O, the smaller circle have center P , tangent to C1, C2 and AB at I, J,K, respectively.
Let the smaller circle have radius r and let OK = s.

Then Pythagorean on APK gives AP 2 = AK2 + PK2, or (AI + IP )2 = (AO + OK)2 + PK2, or
(12+r)2 = (12+s)2+r2. Pythagorean on OPK gives OP 2 = PK2+OK2, or (OJ−JP )2 = PK2+OK2,
or (12− r)2 = r2 + s2. The r2 term cancels in both equations, and we can equate 24r in both to get
144− s2 = s2 + 24s. Thus s = 6

√
3− 6 and r = 3

√
3.

6. From power of a point on E we get AE = BE so ABE is equilateral. Thus ∠ABC = 120◦. By the law

of cosines AC = 2
√

7, and by the extended law of sines 2R =
AC

sin 120◦
, so the circumradius is

2
√

21

3
.

Angles

1. Let ∠ABD = ∠DBC = x◦. We know that ∠ADB = ∠DBC + ∠BCD since it is an exterior angle,

however ∠ADB =
180◦ − ∠ABD

2
as triangle ABD is isosceles. Equating gives x+ 36 =

180− x
2

, or

x = 36◦. Thus since triangle ABD is isosceles, ∠ADB =
180◦ − ∠ABD

2
= 72◦; since triangle ADE is

isosceles ∠ADE =
180◦ − ∠DAB

2
= 54◦, and so ∠BDE = ∠ADB − ∠ADE = 17◦.

2. Let Q be the midpoint of BC. Then ∠ABP = ∠APB = 52◦ by triangle angle sum on ABP , so
AB = BP . Then ABQP is a rhombus. Then AQ is an angle bisector since it is a diagonal, so
∠AQP = 38◦. But PC||AQ and PQ||CD so ∠PCD = ∠AQP = 38◦.

3. Note ∠CBD = ∠ADB−∠DCB upon considering exterior ∠ADB. But ∠ADB = ∠ABD = ∠ABC −
∠CBD through isosceles triangle ABD. Substituting, ∠CBD = (∠ABC − ∠CBD) − ∠DCB =
(∠ABC − ∠ACB)− ∠CBD = 45◦ − ∠CBD. Thus ∠CBD = 22.5◦.

4. Since in AFGE we have ∠AFG+ ∠AEG = 90◦ + 90◦ = 180◦, it is a cyclic quadrilateral. Similarly,
since in BDEF we have ∠BED = ∠BFD = 90◦ then it is also cyclic. Thus ∠GAB = ∠GAF ,
and ∠GAF = ∠GEF by cyclic quadrilateral AFGE, and ∠GEF = ∠BEF = ∠BDF by cyclic
quadrilateral BDEF . However, ∠BDF + ∠FDE = ∠CED since BCDE is a rectangle. Thus
∠GAB = ∠BDF = 17◦.

5. From CA ⊥ CG and BG ⊥ CG we have CA||BG. Then ∠ABG+∠CAB = 180◦, whence ∠ABG = 78◦.
Then ∠ABG = ∠EBG = 2∠EFG = 2∠DFG, so ∠DFG = 39◦.
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Three-dimensional

1. By Euler’s formula, V − E + F = 2, so V = 34.

2. It is a regular tetrahedron of edge 1. Drop the height from the top vertex to the base, which hits its
center. It forms a right triangle with one edge as the hypotenuse, the other leg is from the length

from a vertex to the center. The other leg is 2/3 the median, so its length is

√
3

3
. This gives its

height as

√√√√12 −

(√
3

3

)2

=

√
6

3
. Its volume is one-third the area of the base times its height, or

1

3
·
√

3

4
·
√

6

3
=

√
2

12
.

3. We stack the 7× 9× 11 boxes in a 2× 3× 3 fashion, making it take up 14× 27× 33, which fits in the
17× 27× 37 box. This makes the maximum number 18.

4. Let the sides of the prism be x, y, z; we have xyz = 120 and (x− 2)(y − 2)(z − 2) = 24. WLOG z is
divisible by 5. Then if z = 5, we see (6, 4, 5) works. The surface area is then 2(6 · 5 + 5 · 4 + 4 · 6) = 148.

5. The centers of the spheres form a regular tetrahedron of edge 3. Through similar logic as number 2 in

this section, its height is

√
32 −

√
3
2

=
√

6. The overall height is the height of the tetrahedron plus two

radii, so its height is 3 +
√

6.

Areas

1. The area consists of two 150◦ sectors of a circle with radius 10, one on either side of the horse. Wrapping
around the equilateral triangle gives two more 120◦ sectors, of radius 10− 8 = 2. The total area is thus

2 · 150◦

360◦
π · 102 + 2 · 120◦

360◦
π · 22 = 86π.

2. Drop the altitude from E to AB and CD, which are parallel, so the altitude is the same line. The
length of the altitude from E to AB has to be 20 for the area of AEB to be 60. Since AB||CD we have

EAB simEDC and thus the length of the altitude from E to CD has to be
80

3
. Thus the distance

between lines AB and CD is
80

3
− 20 =

20

3
, which is also the length of the altitude from D to AB.

Thus [BAD] =
1

2
· 6 · 20

3
= 20.

3. Note that4AEB and4AEF share the same base and altitude, so they have the same area. Subtracting
[AEG] from both gives [ABG] = [EFG] = 9. Similarly, [CDH] = [EFH] = 15. Thus [EGFH] =
[EFG] + [EFH] = 24.

4. (Should have E as intersection of diagonals.) Note that AEB and CED are similar with ratio 6 : 15.
Then EB : ED = 6 : 15 as well, as AED and AEB share the same altitude from A, their areas are in
the ratios of their bases, so [AEB] : [AED] = 6 : 15. Thus [AEB] = 12.

5. Let the triangle be ABC intersecting the circle with center O at B′ and C ′ lying on AB and AC,
respectively. The required region is quadrilateral AB′OC ′ minus the sector with arc B′C ′. This is twice

the area of a unit equilateral triangle minus the unit sector of 60◦, or 2 ·
√

3

4
− 1

6
π =

3
√

3− π
6

.

6. In rectangle ABMN with area 2, triangles APM and BPN form half the area, so the sum of their

areas is 1. P is vertically halfway between AM and BN , so its distance to DC is
3

2
. The area of DPC

is thus
1

2
· 2 · 3

2
=

3

2
. Then triangles PQR and DCP are similar, but the height from P to QR is the
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distance from P to AB, which is
1

2
. Thus the ratio of similarity is 1 : 3, so the ratio of their areas is

1 : 9, thus the area of PQR is
1

6
. The sum is

8

3
.

7. It is simplest to Cartesian bash. Set M(0, 0), B(0, 18), I(16, 0). Thus H(0, 8) and A(6, 0). Line BA

is
x

6
+

y

18
= 1 in intercept form, also line IH is

x

16
+
y

8
= 1. Equating gives

x

6
− x

16
=
y

8
− y

18
or

10x

6 · 16
=

10y

8 · 18
, cancelling gives 3x = 2y. Substituting back to either equation gives T (4, 6). Using the

shoelace formula on MATH gives its area as 34.

8. It is also simple to Cartesian bash: set C(0, 0), B(0, 16), A(13, 16) and D(11, 0). Then E is a midpoint

so E(12, 8). The slope of AD is 8 so the slope of EF is −1

8
. Point F lies on BC so its x-coordinate is

zero; it lies on EF so F (0, 9.5). Using the shoelace formula gives 91.

9. Suppose that point C is C ′ after folding, and DC ′ and EC ′ intersect AB at A′ and B′ respectively.
Drop altitudes H from C to DE and M from C to AB. Clearly C,H,M,C ′ are collinear. The ratio
[A′B′C ′] : [ABC] = 16 : 100 is given, thus the ratio C ′M : CM = 4 : 10 due to similarity. Also,
CH = C ′H since they are the same altitude after folding. Since CH + C ′H = CM + C ′M due to

collinearity, 2CH = CM +
2

5
CM from earlier. By similarity, CH : CM = 7 : 10 = DE : AB, so

DE =
56

5
.

10. Let x be the side of the square. The Pythagorean theorem on right CEH gives
(
r − x

2

)2
+ x2 = r2, so

x =
4

5
r. Thus ∠HCE = tan−1

4

3
. The required area is equal to [CHGF ] minus the sector with arc HM ;

the former is
1

2

(
r +

x

2
+ x
)
x while the latter is

1

2
r2 tan−1

4

3
. Simplifying yields r2

(
22

25
− 1

2
tan−1

4

3

)
.

11. Official solution uses algebra and whatever. We use Cartesian. Take an affine transformation to

A(0, 1), B(1, 0), C(0, 0) which preserves the problem, and let P (a, b). It is easy to bash D

(
− a

b− 1
, 0

)
,

E

(
0,− b

a− 1

)
, F

(
a

a+ b
,

b

a+ b

)
. Then [DBP ] = [ECP ] = [FAP ] and bashing gives a = b =

1

3
,

which is as required.
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Manipulation

1. The first equation is
x2 + y2

xy
=

(x+ y)2 − 2xy

xy
= 4, giving (x+ y)2 = 18. Then xy(x+ y)2 − 2(xy)2 =

3 · 18− 2 · 32 = 36.

2. The required expression is 2
(
x2 + y2 + z2 + xy + yz + zx

)
. Squaring the first equation and transposing

yz gives x2 + yz = 2013, similarly, y2 + zx = 2014 and z2 + xy = 2015. Addding all expressions and
multiplying by 2 gives the answer, 12084.

3. Substitute 2n→ k to get m3 − 3mk2 = 40 and k3 − 3m2k = 20, we are looking for m2 + k2. It reminds
us of the triple angle formulas for sine and cosine, so substitute m = r cos θ and k = r sin θ, now we are
looking for r2. The equations become r3

(
cos3θ − 3 sin2 θ cos θ

)
= 40 and r3

(
sin3θ − 3 sin θ cos2 θ

)
= 20.

It is a good idea to write each in terms of only one trigonometric function: substituting the Pythagorean
identity shows us that the first equation is actually r3

(
4 cos3 θ − 3 cos θ

)
= r3 cos 3θ = 40. Similarly,

the second equation is r3 sin 3θ = 20. Squaring both equations and adding gives r6 = 2000, from whence
r2 = 3

√
2000 = 10 3

√
2.

More motivated but more high-powered: after substituting, notice m3− 3mk2 = 40 and k3− 3m2k = 20
look like the expressions from (m−k)3, except the middle terms. We can fix this by making it (m−ki)3;
multiply the second equation by i and add to the first to get m3 − 3m2ki− 3mk2 + k3i = 40 + 20i =
(m− ki)3. Taking the modulus of both sides and using de Moivre’s gives |m− ki|3 =

√
402 + 202, so

m2 + k2 = |m− ki|2 = 10 3
√

2.

4. Abuse degrees of freedom by setting x = y. The condition is x2 + 2x − 1 = 0, and the expression

needed is x2 +
1

x2
− 2. From the condition, x2 = 1− 2x and dividing both sides of the condition by

x2,
1

x2
= 1 +

2

x
, so the expression is now

2

x
− 2x = 2

(
1

x
− x
)

= 2

(
1− x2

x

)
. But from the condition,

1− x2 = 2x, so 2

(
1− x2

x

)
= 4.

(The legit solution is to clear denominators, factor the numerator, expand to get it as (xy + x+ y +
1)(xy − x− y + 1). The first term is 2, the second term, when divided by xy, is the condition divided
by xy.)

5. Cross-multiply the condition and divide both sides by a to get a +
1

a
= 3. Divide both numerator

and denominator of the expression by a3; the numerator becomes 1 and the denominator becomes(
a3 +

1

a3

)
+

(
a2 +

1

a2

)
+

(
a+

1

a

)
+ 1. But from a+

1

a
= 3, we get a2 +

1

a2
= 7 after squaring both

sides, and a3 +
1

a3
= 18 after cubing and subtracting the original expression. The denominator is thus

18 + 7 + 3 + 1 = 29, so the fraction is
1

29
.

6. Dividing both sides by 4 gives
1

4
+

1

16
+

1

36
+ · · · = π2

24
. Subtracting from the original equation gives

1 +
1

9
+

1

25
+ · · · = π2

8
.

7. Squaring both sides and subtracting 2 gives x2 + x−2 = 7. Repeating gives x2
2

+ x−22 = 47, etc. The
last two digits are 3, 7, 47, 7, 47, . . .. The pattern repeats, so the last two digits are 07.
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8. Multiply the equations by a, b, c respectively, and subtract pairwise and transpose to get (a+ bc)x =

(b + ca)y = (c + ab)z. The required ratio is

(
x

y
− 1

)(y
z
− 1
)( z

x
− 1
)

, to get these we divide the

equations with each other and simplify:
(a− 1)(b− 1)(c− 1)(a− b)(b− c)(c− a)

(a+ bc)(b+ ca)(c+ ab)
.

Surds

1. Multiplying numerator and denominator by 3
√

8 − 3
√

2 and using the difference of two cubes, then
cancelling out the factor 6, leaves 2− 3

√
2.

2. Expanding the right-hand side gives 2a2 + 3b2 + c2 + 2ac
√

2 + 2bc
√

3 + 2ab
√

6. Equating coefficients
gives ac = −2, bc = −3, ab = 6. Multiplying all equations and taking the square root gives abc = 6,
from whence a = −2, b = −3, c = 1 upon division by the three equations. Then a2 + b2 + c2 = 14.

3. Squaring both sides gives 2x + 2
√
x2 − 3x− 6 = 36, or

√
x2 − 3x− 6 = 18 − x. Squaring both sides

again gives x2 − 3x− 6 = x2 − 36x+ 324, whence x = 10.

4. Cubing both sides and using the binomial theorem, the terms which would end up with
√

5 in the
expansion would have odd exponent for

√
5. If this were negative, then it would multiply out – so the

value must be 12−
√

5.

5. Note that a = 4 +
√

15 and b = 4−
√

15 after rationalizing denominators. Then a+ b = 8 and ab = 1.

However, a4 + b4 =
(
a2 + b2

)2 − 2 (ab)
2

=
(

(a+ b)
2 − 2ab

)2
− 2 (ab)

2
. Substituting everything yields

7938.

6. Observe 2 =
(
1 + n
√

2− 1
)n ≥ 1 +

(
n
2

) (
n
√

2− 1
)

by the binomial theorem. The inequality follows.

Sequences

1. If there were perfect squares, the 150th term would be 150; except we skipped 12 terms, so it should be
162.

2. Abuse degrees of freedom: one such sequence is 0, 2, 2, 4, 4, . . . , 98, 98, 100, so the average of the first
and hundredth terms is 50.

The legit method is to write a1 + a2 = 2, a2 + a3 = 4, . . . , a99 + a100 = 198. Take the sum of the
odd-numbered equations to find a1 + a2 + · · ·+ a100 and the sum of the even-numbered equations to
find a2 + a3 + · · ·+ a99; taking their difference yields a1 + a100 = 100, so the average is 50.

3. Add 1 to both sides of the recursion to get bn+1 + 1 =
2

1 + bn
, or (bn + 1) (bn+1 + 1) = 2. So the terms

alternate
1

3
,

1

2
,

1

3
,

1

2
, . . ., so b2010 − b2009 =

1

2
− 1

3
=

1

6
.

4. From the geometric sequence, 16y2 = 15xz and
2

y
=

1

x
+

1

z
, or

2

y
=

x+ z

xz
. Substituting the first

equation gives
32

15
y = x + z. The desired expression is

x2 + z2

xz
=

(x+ z)
2 − 2xz

xz
=

(x+ z)
2

xz
− 2.

Substituting the previous values for xz and x+ z makes the y cancel, giving
34

15
.

5. It is clear that the terms in the sequence 1, 3, 7, 13, 21 are quadratic. The method of differences or
Newton interpolation yields the formula n2 − n+ 1, and continuing to 2015 means the sum is taken
from n = 1 to 45. The sum is then

∑
n2 −

∑
n+ 45, or 30405.

6. The condition is equivalent to
1

an+1
=

1

an
+ c, so the reciprocals of the terms are arithmetic. With this

in mind, c = 183.
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7. It can be easily proven, say, with induction, that an =
1

n!
. Or prove an−1/an = n with induction. The

required sum is 1 + 2 + · · ·+ 2009 = 2019045.

Series

1. There were 17n+1 numbers on the board originally, making the original sum 602n plus whatever number
was erased. Estimate 1+2+ · · ·+17n+(17n+1) ≥ 602n to get n = 4, the sum is 1+2+ · · ·+69 = 2415,
and 602n = 2408. The erased number was 2415− 2408 = 7.

2. Adding the first n and the last m−n numbers gives the sum of the first m numbers being 7140. Solving

1 + 2 + . . . + m =
m(m+ 1)

2
= 7140 is to estimate

√
2× 7140 =

√
14280 ≈ 120, checking, m = 119

works.

3. The sum of the first series is
a
b

1− 1
b

=
a

b− 1
= 4, so a = 4b−4. The second series is

a
a+b

1− 1
a+b

=
a

a+ b− 1
.

Substituting a = 4b− 4, factoring out b− 1, and cancelling gives its value as
5

4
.

4. Let the sum be S. Then 2S = 2+2+3

(
1

2

)
+4

(
1

2

)2

+5

(
1

2

)3

+· · · , and subtracting the original equation

from it yields S = 2 + (2− 1) +

(
3

(
1

2

)
− 1

)
+

(
4

(
1

2

)2

− 3

(
1

2

)2
)

+

(
5

(
1

2

)3

− 4

(
1

2

)3
)

+ · · · ,

or S = 2 + 1 +
1

2
+

1

22
+

1

23
+ · · · . Then S is an infinite geometric series, with sum S =

2

1− 1
2

= 4.

5. This is
1

1× 3
+

1

3× 5
+ · · ·+ 1

13× 15
, which telescopes as

1

2

(
1− 1

3

)
+

1

2

(
1

3
− 1

5

)
+ · · ·+ 1

2

(
1

13
− 1

15

)
.

The sum is
7

15
.

6. The telescope is
1

n(n− 2)
=

1

2

(
1

n− 2
− 1

n

)
. Multiply both sides of the sum by 2 and expand the two

telescopes to get
1

3
+

1

4
− 1

N − 1
− 1

N
<

1

2
, or

1

N − 1
+

1

N
>

1

12
. The maximum that satisfies this is

when N = 24.

7. From i = 1 to 99, the value is 0. From i = 100 to 399, the value is 1, so the subtotal is 300. From
i = 400 to 899, the value is 2, the subtotal is 1000. From i = 900 to 1599, the value is 3, the
subtotal is 2100. From i = 1600 to 2015, the value is 4, so the subtotal is 1664. The total sum is
300 + 1000 + 2100 + 1664 = 5064.

8. Expand to prove f(x) + f(1− x) = 1, so pairing up terms in the series gives 1006.

9. Take the derivative of both sides of (1 + x)19 =
∑(

19
k

)
xk to get 19(1 + x)18 =

∑
k
(
19
k

)
xk−1. Substitute

x = 1 to get 19 · 218.

Alternatively, there is a combinatorial proof involving choosing a subset of 19 people and making
choosing 1 to be the leader: either you pick the subset first and choose 1 then, giving the sum, or you
pick one to be the leader first and each of the 18 others are either in the subset or not.

Inequalities

1. The inequality x2 + x− 12 > 0 is (x+ 4)(x− 3) > 0. For it to have solution set (−4, 3), the sign should
be reversed – so we must have k(x2 + 6x− k) < 0 for all x. Then k should be negative and x2 + 6x− k
should have negative discriminant, or k < −9. Thus k ∈ (−∞, 9] works.

2. By Cauchy–Schwarz, (x2 + y2 + z2)2 ≤ (12 + 12 + 12)(x4 + y4 + z4), giving k = 3.
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3. From AM-GM, S−a1 = a2 +a3 +a4 +a5 ≥ 4 4
√
a2a3a4a5, taking the cyclic product gives k = 45 = 1024.

4. By Cauchy–Schwarz,

(
12 +

(
a√

sinx

)2
)

+

(
12 +

(
b√

cosx

)2
)
≥

(
1 +

(
ab√

sinx cosx

)2
)

, and using

the equality sin 2x = 2 sinx cosx, the right-hand side can be manipulated to give the right-hand side of
the inequality.

5. The inequality clearly does not hold when k < 2, for example, when a = b = c = 1. To show it is true
for k = 2, it is equivalent to (2 + a)(2 + b) + (2 + b)(2 + c) + (2 + c)(2 + a) ≤ (2 + a)(2 + b)(2 + c) after
clearing denominators. Expanding and cancelling many terms, then using 1 = abc, gives ab+ bc+ ca ≥ 3
which is true by AM-GM as follows: ab+ bc+ ca ≥ 3

{
a2b2c2

}
= 3. The steps are reversible.

Single-variable extrema

1. By AM-GM, since both terms are positive, (7−x)4(2+x)5 ≤
(

(7− x) + · · ·+ (7− x) + (2 + x) + · · ·+ (2 + x)

9

)9

.

The numerator simplifies to 38 + x, and since we want equality, we let 7− x = 2 + x or x = 2.5, making
the maximum (4.5)9.

2. We have 4x − x4 − 1 = −(x4 − 2x2 + 1) − 2x2 + 4x − 1 + 1 = −(x2 − 1)2 − 2(x2 − 2x + 1) + 2 =
−(x2 − 1)2 − 2(x− 1)2 + 2 ≤ 2 by the trivial inequality, equality at x = 1. Thus the maximum is 2.

3. Let A(4, 2), B(2,−4), and O be a point on y = x3. We then wish to maximize AO −BO, which occurs
when O lies on the line AB past either end, which does indeed intersect the graph of y = x3. Then
AO −BO = AB, and the distance is 2

√
10.

4. By Cauchy–Schwarz, (2(x− 1) + 4(2y))
2 ≤ (22+42)

(
(x− 1)2 + 4y2

)
. The left-hand-side is 2x+8y−2 =

1, so we get x2 + 4y2 − 2x ≥ −19

20
.

5. Scrapped.

Multi-variable extrema

1. x and y are independent, so we want to minimize x and maximize y. This happens when x = −1 and
y = 4, whence x− y = −5.

2. Clearly we must want all the terms to be positive, by AM-GM the sum is at least 2014 2014

√√√√2014∏
i=1

sin θi cos θi =

2014 2014

√√√√2014∏
i=1

1

2
sin 2θi ≥ 2014 2014

√√√√2014∏
i=1

1

2
= 1007, the last inequality from sin θ ≥ 1. Equality is achiev-

able when sin 2θi = 1, or when all the θi = 45◦, giving the maximum as 1007.

3. Distributing the product and the square root shows it is equivalent to

√
1 +

b

a
+

√
1 +

a

b
, which by

AM-GM is at least 2 4

√
2 +

b

a
+
a

b
, and by AM-GM again is at least 2 4

√
2 + 2 = 2

√
2.

4. This is
(
2a8 + a4 − 2a2

)
+
(
2b6 − b3 − 2

)
, so it suffices to minimize each independently. This can be

done through calculus, the legit way is slower. Take u = a2 and the derivative, to get minimum as −5

8
;

the second is just a quadratic with vertex at −17

8
. Their sum is −11

4
.

5. The legit solution is to manipulate cleverly and use AM–GM. The cheating solution is to convert it to
a single-variable problem by substituting x = 8− 2y and using calculus, the minimum is attained at
y = 3, giving the value 8.
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6. We factor out the 2 from 2 − y and the 3 from 3 − z to get 6(1 − x)
(

1− y

2

)(
1− z

3

)(
x+

y

2
+
z

3

)
which by AM-GM is at most 6

(
(1− x) +

(
1− y

2

)
+
(
1− z

3

)
+
(
x+ y

2 + z
3

)
4

)4

=
35

27
=

243

128
.

7. Substituting x → 1 − x gives a system of linear equations, from which f(x) =
5(x− 1)

x2 − x+ 1
=

5

(x− 1) + 1 +
1

x− 1

, and by AM-GM this is maximized when x− 1 =
1

x− 1
or x = 2. Then f(2) =

5

3
.

8. The denominator is (x2 + y2)3 + 3x3y3, dividing numerator and denominator by x3y3 and simplifying

makes the expression
1(

x
y + y

x

)3
+ 3

. We need to maximize
x

y
+
y

x
, which occurs when x =

1

2
and

y =
3

2
, making the minimum

27

1081
.

9. Let r + s = a and rs = b. The given is (a − b)(a + b) = b, so b2 + b = a2 ≥ 4b by AM-GM. Hence
b ≥ 3 and a ≥ 2

√
3, which makes the minimum of r + s− rs = a− b as 2

√
3− 3 and the minimum of

r + s+ rs = a+ b as 2
√

3 + 3, which are achievable.
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Ad hoc

1. Let BC = 1, AB = 2. Then AC =
√

5, and CD = DA = BD =

√
5

2
by Thales’s. Since CD = DA and

they share the same altitude from B, [BCD] = [BDA] =
1

2
[ABC] =

1

2
. But [BCD] =

1

2
CE ·BD, so

CE =
2
√

5

5
. Using the Pythagorean theorem gives BE and ED, then BE : ED = 2 : 3.

2. Let the center of the circle be O, the intersection of the diagonals of the square ABCD be E. Let the
tangents from A to the circle be AR and AS, with R lying on AE. Let EO intersect the square at T ,
and let RE = x.

Then AR =
√

2− x as AE =
√

2, and AS = AR as they are both tangents from A. But clearly ATOS
is a rectangle, so AS = TO, whence EO = ET + TO = 1 +

√
2− x. From Pythagorean on ERO, we

have EO2 = RE2 +RO2 or
(
1 +
√

2− x
)2

= x2 + 1, giving x = 1 by inspection.

Then TO =
√

2 − 1, and PO = 1, so by Pythagorean PT =
√

2
√

2− 2. PQ is double this, or

2
√

2
√

2− 2 =
√

8
(√

2− 1
)
.

3. Let the perpendicular bisectors of AP and BP intersect at O, and let OP intersect CD again at F .

Then ∠CPF = ∠APO due to vertical angles. However, ∠ABP =
1

2
∠AOP =

1

2
(180◦ − 2∠APO)

since AO = OP due to it being the circumcenter, and thus AOP is isosceles. This makes ∠ABP =
90◦ − ∠APO = 90◦ − ∠CPF . But ∠ABP = ∠DCP since 4ABP ∼= 4DCP by SAS. Thus ∠DCP =
∠FCP = 90◦ − ∠CPF , so ∠FCP + ∠CPF = 90◦ and thus ∠PFC = 90◦, which is what we wanted.

4. Let AB = a,BC = b, CD = c,DA = d, PD = p. Then [CPD] =
1

2
cp sinD, and [ABCP ] =

[ABC] + [ACD] − [CPD] =
1

2
ab sinB +

1

2
cd sinD − 1

2
cp sinD, but sinB = sinD since it is a cyclic

quadrilateral. Factoring out, [CPD] = [ABCP ] implies cp = ab + cd − cp, or 2cp = ab + cd. Equal
perimeters imply 2p = a+ b− c+ d, substituting yields ac+ bc− c2 + cd = ab+ cd, which factors as
(c− a)(c− b) = 0. Thus either c = a or c = b.

5. There is a solution using similar triangles, as the official solution: from PBC ∼ PDB implies
BC/BD = BP/DP and from PAC ∼ PDA implies AC/AD = AP/DP . Since AP = BP , we get
BC/AC = BD/AD. But from AEB ∼ ABC, BC/AC = BE/AB and from AFB ∼ ABD we get
BD/AD = BF/AB. Thus BE/AB = BF/AB and BE = BF .

But projective is much nicer. Since AA, BB and CD concur, then ACBD is a harmonic quadrilateral,
and −1 = (A,B;C,D). Taking a perspectivity through A to line EF gives us −1 = (T,B;E,F ), where
T is the point on infinity on EF , from whence B is the midpoint.

Triangles

1. We can construct a lot of altitudes, but trigonometry is cleaner: DE2 = DC2 + EC2 − 2DC ·
EC cos∠DCE, but cos∠DCE = cos∠ACB =

4

5
. Thus CE =

8

3
, so the perimeter of ABED is

28

3
.

2. Let BC = x, from which AB = AF = 2x as they are both tangents, BC = CD = x as they are both
tangents. For the perimeter to be 36, we must have EF = DF = 18− 3x. Using Pythagorean on ACE
gives x = 0, 3, where 0 is obviously extraneous. Then CE = 18− 2x = 12.
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3. Since AQC ∼ QEC, we get AC/QC = QC/EC, or QC2 = EC ·AC. Similarly, PC2 = DC ·BC. As
∠AEB = ∠ADB = 90◦ then ABDE is cyclic and EC ·AC = DC ·BC by power of a point through C,
whence PC2 = QC2 and PC = QC.

4. WLOG AB < AC. Use Ptolemy’s, Pythagorean, and the given identity to show that 2·DF (AB+AC) =
BC ·AC −BC ·AB. Since EF = EC − FC, we can find EC using angle bisector theorem and FC is
half of BC. Simplifying shows DF = EF .

5. Let Z be the midpoint of BC. Since XY Z ∼ ABC, then ∠XZY = ∠BAC = ∠XDY so XDZY is
cyclic. But ∠XDB = 180◦ − ∠XDZ = ∠XY Z = ∠ABC again since XY Z ∼ ABC. This implies
XA = XB = XD, and thus AB is a diameter of (ABD), from which ∠ADB = 90◦.

Coordinate geometry

1. Let the center of the circle be Q(0, 2) and let P be a point on the circle. From the equation, it has
radius 1. When P is on the upper semicircle, the tangent line clearly intersects the y-axis above the
circle, so it has a positive y-intercept.

Consider the point P such that the tangent line through Q passes through the origin O(0, 0). Since
it is a tangent, ∠QPO = 90◦, since it is a radius, QP = 1 and we know the distance QO = 2. Thus
triangle QPO is a 30− 60− 90 triangle. Then ∠PQO = 60◦.

There is a 60◦ arc from either side in the lower half, and in this arc everything has non-negative
y-intercept. There is the whole upper half from earlier, which makes a total of 60◦ + 60◦ + 180◦ = 300◦.

The length of the arcs is thus
300◦

360◦
2πr =

5

3
π.

2. Shoelace formula gives 144.

3. Assign a mass of 1A, 1B and 2C. Let E be the midpoint of AB, and G be the intersection of
CE and AP . Then 1A + 1B = 2E, and since BP : PC = 2 : 1, we have 1B + 2C = 3P . Then
4G = 1A+ 3P = 2E + 2C, making G the midpoint of EC.


