VCSMS PRIME

Program for Inducing Mathematical Excellence

Session 10: Polynomials
October 13, 2017

Lecture problems

1. What is $(1+i)^{2017}$?
2. A robot's first move is to go east one unit. For its $n+1$ st move, it turns 45° counterclockwise and travels half the distance of the nth move. How far is the robot from where it started after 2017 moves?
3. Complex numbers x, y, z satisfy $|x|=|y|=|z|=x y z=1$ and $x+y+z=0$. Find $|(2+x)(2+y)(2+z)|$.
4. (MMC) A third-degree polynomial satisfies $P(0)=-3$ and $P(1)=4$. When $P(x)$ is divided by $x^{2}+x+1$ the remainder is $2 x-1$. In the same division, what is the quotient?
5. (USAMO) Let a, b, c, d be real numbers such that $b-d \geq 5$ and the zeroes $x_{1}, x_{2}, x_{3}, x_{4}$ of the polynomial $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ are real. Find the minimum of $\left(x_{1}^{2}+1\right)\left(x_{2}^{2}+1\right)\left(x_{3}^{2}+1\right)\left(x_{4}^{2}+1\right)$.
6. Prove that $\sin (\pi / n) \sin (2 \pi / n) \cdots \sin ((n-1) \pi / n)=n / 2^{n-1}$.
7. (QII3) Let $f(x)$ be a polynomial of degree 4 with integer coefficients, leading coefficient 1 , and having $\sqrt{10}+\sqrt{11}$ as one of its zeroes. What is the sum of its coefficients?
8. (MMC) Find the x-coefficient of the fifth-degree polynomial satisfying $P\left(3^{k}\right)=k$ for $k=0,1, \ldots, 5$.
9. (AIME II 2005/13) Let $P(x)$ be a polynomial with integer coefficients satisfying $P(17)=10$ and $P(24)=17$. Given $P(n)=n+3$ has two distinct integer solutions, find their product.
10. (QI4) Suppose that r_{1} and r_{2} are the roots of the equation $4 x^{2}-3 x-7=0$. What is the sum of the squares of the reciprocals of r_{1} and r_{2} ?
11. (Mandelbrot) Find the area of the triangle whose side lengths are the roots of $x^{3}-4 x^{2}+5 x-1.9$.
12. (AIME 2005/8) Find the sum of the roots of the equation $2^{333 x-2}+2^{111 x+2}=2^{222 x+1}+1$.

Completing the reals

- The algebraic completion of the reals are the complex numbers. That is, any polynomial with real coefficients has only complex roots. The complex numbers are algebraically closed.
- We can represent as $z=a+b i$ and think of it as Cartesian coordinates, or $r e^{i \theta}=r(\cos \theta+i \sin \theta)=$ $r \operatorname{cis} \theta$ and think of it as polar coordinates. The latter is often more helpful.
- We write $|z|=r$ and $\arg z=\theta$. Its conjugate is written as $\bar{z}=a-b i$ and has the important property $|z|^{2}=z \bar{z}$. Conjugation distributes over arithmetic.
- Addition is vectorially or end-to-end. Multiplication is rotation and scaling: the radii multiply, the directions add because of $r e^{i \theta}$. This gives de Moivre's theorem.
- Problem 1: It would be hard to expand, so instead use polar coordinates: $\left(\sqrt{2} \operatorname{cis} 45^{\circ}\right)^{2017}$.
- Problem 2: Represent each move with complex numbers, it's the previous move times $\frac{\sqrt{2}}{4}(1+i)$. It's a geometric series with first term 1 and 2017 terms. Compute its sum using problem 1.

Roots of unity

- The nth roots of unity are the n complex roots to $x^{n}-1=0$. The square roots of unity are 1 and -1 , the cube roots are $1, \operatorname{cis} \frac{2 \pi}{3}$, and cis $\frac{4 \pi}{3}$, the fourth roots are $1, i,-1$, and $-i$. Generally, nth roots of unity are $\operatorname{cis}\left(\frac{2 \pi}{n} k\right)$ for nonnegative k less than n.
- Typically: $x^{3}=1$ but $x \neq 1$. Then if you let ω be the first cube root, ω^{2} is the second cube root. Also $x^{3}-1=(x-1)\left(x^{2}+x+1\right)=0$, but $x \neq 1$, so $\omega^{2}+\omega+1=0$ as it is a root.
- Problem 3: If you see symmetric relations involving complex numbers, guess roots of unity. Which works here, luckily: $x=1, y=\omega, z=\omega^{2}$ works. Then expand.

Polynomial division

- The division algorithm is $P(x)=Q(x) D(x)+R(x)$ with obvious relations between degrees. The remainder theorem and factor theorem follow from $D(x)=x-a$ and substitution.
- Problem 4: Write $P(x)=Q(x)\left(x^{2}+x+1\right)+(2 x-1)$, then $Q(x)$ is linear, substitute $x=0,1$.

Factored form

- An nth degree polynomial can be written as $\Pi\left(x-r_{i}\right)$, where r_{i} are its roots. This goes with substitution. Interpreting factors gives the table of signs, relative maxima and minima, etc.
- Problem 5: Thinking $P(x)=\Pi\left(x-x_{i}\right)$ and factoring $\Pi\left(x_{i}^{2}+1\right)=\prod\left(x_{i}-i\right)\left(x_{i}+i\right)$, we get the inspiration to write the product as $P(i) P(-i)$. The product is at least 16 from the inequality, and it's achievable when all the roots are 1.
- Problem 6: Let $\omega=e^{i \pi / n}$. Recall from session 5 that $\sin (k \pi / n)=\left(\omega^{k}-\omega^{-k}\right) / 2 i$. Then the product is $\prod_{k=1}^{n-1} \frac{\omega^{k}-\omega^{-k}}{2 i}=\frac{1}{2^{n-1}} \prod_{k=1}^{n-1} \frac{\omega^{-k}}{i}\left(1-\omega^{2 k}\right)$. The left factor is just $\omega^{-n(n-1) / 2}$ divided by i^{n-1}, which cancels. The right factor is substituting 1 in the roots of unity polynomial $x^{n}-1=0, x \neq 1$.

Root theorems

- Polynomials with real coefficients have conjugate non-real roots, polynomials with rational coefficients have conjugate irrational roots. Also, rational root theorem and synthetic division for root-finding.
- Problem 7: The roots are $\pm \sqrt{10} \pm \sqrt{11}$. Its sum of coefficients is $f(1)$, think of its factored form. Or, do $x=\sqrt{10}+\sqrt{11}$ and square twice.

Rewriting polynomials

- Problem 8: Consider the polynomial $P(3 x)-P(x)-1$. It is a fifth-degree polynomial with roots $k=1, \ldots, 5$, so we can write it as $A(x-1)(x-2) \cdots(x-5)$ for some constant A. Substituting $x=0$ gives the constant, and we only need to find the x-coefficient.
- Problem 9: We have $P(x)-x+7=A(x)(x-17)(x-24)$, also $P(x)-x-3=B(x)\left(x-n_{1}\right)\left(x-n_{2}\right)$. Then n_{1} and n_{2} are the roots of $A(x)(x-17)(x-24)=10$, trial and error gives $n=19,22$.

Roots and coefficients

- Vieta's, rule of signs, discrete Fourier: "find the sum of the coefficients with exponent divisible by 3."
- Problem 10: Directly, $1 / r_{1}^{2}+1 / r_{2}^{2}=\left(r_{1}+r_{2} / r_{1} r_{2}\right)^{2}-2 /\left(r_{1} r_{2}\right)$. There is also an important trick: for a bijection f, the substitution $x \rightarrow f^{-1}(x)$ changes the roots to $f\left(r_{i}\right)$. So here, we can try $x \rightarrow 1 / x$.
- Problem 11: Recall Heron's and factored form. The semiperimeter is half the sum of the roots, or 2.
- Problem 12: Substitute $2^{111 x} \rightarrow y$. The sum of x is the sum of $\frac{1}{111} \log _{2} y$, so Vieta's on products.

