VCSMS PRIME

Program for Inducing Mathematical Excellence Session 2: Functions September 15, 2017

Lecture problems

- 1. (QI1) If $27^3 + 27^3 + 27^3 = 27^x$, what is the value of x?
- 2. (AI11) How many real numbers x satisfy the equation

$$\left(\left|x^{2}-12x+20\right|^{\log x^{2}}\right)^{-1+\log x} = \left|x^{2}-12x+20\right|^{1+\log(1/x)}$$
?

- 3. (QI2) Let a, b > 0. If $|x a| \le a + b$, what is the minimum value of x?
- 4. (QIII4) Let $f(x) = \sqrt{-x^2 + 20x + 400} + \sqrt{x^2 20x}$. How many elements in the range of f are integers?
- 5. (AI2) Let f be a real-valued function such that f(x f(y)) = f(x) xf(y) for any real numbers x and y. If f(0) = 3, determine f(2016) f(2013).
- 6. (AI8) For each $x \in \mathbb{R}$, let $\{x\}$ be the fractional part of x in its decimal representation. For instance, $\{3.4\} = 3.4 3 = 0.4, \{2\} = 0$, and $\{-2.7\} = -2.7 (-3) = 0.3$. Find the sum of all real numbers x for which $\{x\} = \frac{1}{5}x$.

Exponents

- $b^e = x$. If b > 0 (and not 1) then $e \in \mathbb{R}$. If b = 0, then e > 0. If b = 1, then range is just 1. The negative case is very complicated. Range is all real numbers, except $b \le 0$ and b = 1. Monotonic, so if $e \in [c, d]$ then $x \in [b^c, b^d]$.
- Write everything in the same base and hope it works!
- If we can't make the bases the same, we can make the exponents the same: 11⁸ and 16⁷.
- If $a, b, c \in \mathbb{R}$, and $a \ge 0$ then $a^b = a^c$ implies one of either: **a**) a = 0, b, c > 0, **b**) a > 0, b = c, **c**) a = 1. The case of negative base is complicated again.

Logarithms

- $\log_b x = e$. Must have b > 0 and x > 0, but range is any $e \in \mathbb{R}$. Monotonic, so if $x \in [c, d]$ then $e \in [\log_b c, \log_b d]$.
- Write everything in the same base and hope it works!
- Spam $\log_b x = e \iff x = b^e$. Think of "raising both sides to the *b*th power" and "cancelling the logarithm:" $b^{\log_b x} = x$. Since logarithms are monotonic, inequalities work too.
- Recall the rules of logarithms: the most important are $\log_b x + \log_b y = \log_b xy$, $c \log_b x = \log_b x^c$, and $\log_b x = \frac{\log_c x}{\log_b b}$, the rest can be derived.

Surds

- $y = \sqrt{x}$. Must have $x \ge 0$. Monotonic, so if $x \in [a, b]$ then $y \in [\sqrt{a}, \sqrt{b}]$.
- Rationalize the denominator, often with $x^2 y^2 = (x y)(x + y)$ or $x^3 \pm y^3 = (x \pm y)(x^2 \mp xy + y^2)$.
- If you have $\sqrt{a + \sqrt{b}}$, maybe you can simplify it to $x + \sqrt{y}$. Equate and square both sides. Same thing with cube roots.
- If you have conjugates, like $x = \sqrt{a} + \sqrt{b}$ and $y = \sqrt{a} \sqrt{b}$, you can often write y in terms of x.

Floor, ceiling, fractional

- |x| is the integer part of x. If |x| = c, then $c \le x < c + 1$. Monotonic.
- $\lceil x \rceil$ is ceiling, if $\lceil x \rceil = c$ then $c < x \le c+1$. Monotonic.
- $\{x\}$ is fractional part or x |x|. Not monotonic. Always has $0 \le \{x\} < 1$.
- One technique is to substitute x = n + r where $n = \lfloor x \rfloor$ and $r = \{x\}$. Use the fact that $0 \le r < 1$ to find values of n.
- Another technique is to replace all $\{x\}$ with x |x|.

Absolute value

- y = |x| is always split into two cases: when x < 0, |x| = -x and when x > 0, |x| = x.
- Not monotonic, so we have to be careful with inequalities: if you have $|x| \le y$ then you split it into $-y \le x \le y$. If $|x| \ge y$ then $x \le -y$ or $x \ge y$.
- Sums of absolute values: if you're minimizing |x a| + |x b| + |x c|, the minimum value is when x is the median of a, b, c. If even number of values, then any x between the two median values works.

Rational functions and limits

- $y = \frac{f(x)}{g(x)}$. Must have $g(x) \neq 0$.
- Very common to find the range, as in $\frac{x^4+3}{2x^4+1}$. Find the fastest growing term and consider that. What happens if $x \to \infty$, or $x \to -\infty$? What makes it the smallest value?
- From slow growing to fast: constants, logarithms, polynomials, exponents. (This is towards positive infinity.)

Functional equations

- Treat it as a system of equations machine and find stuff.
- Substitution: To find f(0) or f(1) or whatever, get stuff to cancel. Try substituting all 0 or all 1.
- Involutions: if we have f(x) and f(a-x) and we're finding f(c), then substituting x = c and x = a c gives two equations. Similar: f(x) and f(1/x) means substituting x = c and 1/c. Functions where $f \circ f(x) = x$ are called *involutions*.
- Induction: if we have f(x) and f(x+1) and you know f(0), you can find any f(n) for any natural n.
- Cheat: if only one function satisfies the conditions (i.e. there's only one possible answer), then just find one and use that. Try linear functions, constants, etc.
- Cauchy FE: if f(x+y) = f(x) + f(y) for $x, y \in \mathbb{Q}$ then f(x) = kx for some constant k. Making it reals is harder, it works if you have either bounding, monotonicity, or continuity.