VCSMS PRIME

Program for Inducing Mathematical Excellence

Session 2: Functions
September 15, 2017

Lecture problems

1. (QI1) If $27^{3}+27^{3}+27^{3}=27^{x}$, what is the value of x ?
2. (AI11) How many real numbers x satisfy the equation

$$
\left(\left|x^{2}-12 x+20\right|^{\log x^{2}}\right)^{-1+\log x}=\left|x^{2}-12 x+20\right|^{1+\log (1 / x)} ?
$$

3. (QI2) Let $a, b>0$. If $|x-a| \leq a+b$, what is the minimum value of x ?
4. (QIII4) Let $f(x)=\sqrt{-x^{2}+20 x+400}+\sqrt{x^{2}-20 x}$. How many elements in the range of f are integers?
5. (AI2) Let f be a real-valued function such that $f(x-f(y))=f(x)-x f(y)$ for any real numbers x and y. If $f(0)=3$, determine $f(2016)-f(2013)$.
6. (AI8) For each $x \in \mathbb{R}$, let $\{x\}$ be the fractional part of x in its decimal representation. For instance, $\{3.4\}=3.4-3=0.4,\{2\}=0$, and $\{-2.7\}=-2.7-(-3)=0.3$. Find the sum of all real numbers x for which $\{x\}=\frac{1}{5} x$.

Exponents

- $b^{e}=x$. If $b>0$ (and not 1) then $e \in \mathbb{R}$. If $b=0$, then $e>0$. If $b=1$, then range is just 1 . The negative case is very complicated. Range is all real numbers, except $b \leq 0$ and $b=1$. Monotonic, so if $e \in[c, d]$ then $x \in\left[b^{c}, b^{d}\right]$.
- Write everything in the same base and hope it works!
- If we can't make the bases the same, we can make the exponents the same: 11^{8} and 16^{7}.
- If $a, b, c \in \mathbb{R}$, and $a \geq 0$ then $a^{b}=a^{c}$ implies one of either: a) $\left.\left.a=0, b, c>0, \mathbf{b}\right) a>0, b=c, \mathbf{c}\right) a=1$. The case of negative base is complicated again.

Logarithms

- $\log _{b} x=e$. Must have $b>0$ and $x>0$, but range is any $e \in \mathbb{R}$. Monotonic, so if $x \in[c, d]$ then $e \in\left[\log _{b} c, \log _{b} d\right]$.
- Write everything in the same base and hope it works!
- Spam $\log _{b} x=e \Longleftrightarrow x=b^{e}$. Think of "raising both sides to the b th power" and "cancelling the logarithm:" $b^{\log _{b} x}=x$. Since logarithms are monotonic, inequalities work too.
- Recall the rules of logarithms: the most important are $\log _{b} x+\log _{b} y=\log _{b} x y, c \log _{b} x=\log _{b} x^{c}$, and $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$, the rest can be derived.

Surds

- $y=\sqrt{x}$. Must have $x \geq 0$. Monotonic, so if $x \in[a, b]$ then $y \in[\sqrt{a}, \sqrt{b}]$.
- Rationalize the denominator, often with $x^{2}-y^{2}=(x-y)(x+y)$ or $x^{3} \pm y^{3}=(x \pm y)\left(x^{2} \mp x y+y^{2}\right)$.
- If you have $\sqrt{a+\sqrt{b}}$, maybe you can simplify it to $x+\sqrt{y}$. Equate and square both sides. Same thing with cube roots.
- If you have conjugates, like $x=\sqrt{a}+\sqrt{b}$ and $y=\sqrt{a}-\sqrt{b}$, you can often write y in terms of x.

Floor, ceiling, fractional

- $\lfloor x\rfloor$ is the integer part of x. If $\lfloor x\rfloor=c$, then $c \leq x<c+1$. Monotonic.
- $\lceil x\rceil$ is ceiling, if $\lceil x\rceil=c$ then $c<x \leq c+1$. Monotonic.
- $\{x\}$ is fractional part or $x-\lfloor x\rfloor$. Not monotonic. Always has $0 \leq\{x\}<1$.
- One technique is to substitute $x=n+r$ where $n=\lfloor x\rfloor$ and $r=\{x\}$. Use the fact that $0 \leq r<1$ to find values of n.
- Another technique is to replace all $\{x\}$ with $x-\lfloor x\rfloor$.

Absolute value

- $y=|x|$ is always split into two cases: when $x<0,|x|=-x$ and when $x>0,|x|=x$.
- Not monotonic, so we have to be careful with inequalities: if you have $|x| \leq y$ then you split it into $-y \leq x \leq y$. If $|x| \geq y$ then $x \leq-y$ or $x \geq y$.
- Sums of absolute values: if you're minimizing $|x-a|+|x-b|+|x-c|$, the minimum value is when x is the median of a, b, c. If even number of values, then any x between the two median values works.

Rational functions and limits

- $y=\frac{f(x)}{g(x)}$. Must have $g(x) \neq 0$.
- Very common to find the range, as in $\frac{x^{4}+3}{2 x^{4}+1}$. Find the fastest growing term and consider that. What happens if $x \rightarrow \infty$, or $x \rightarrow-\infty$? What makes it the smallest value?
- From slow growing to fast: constants, logarithms, polynomials, exponents. (This is towards positive infinity.)

Functional equations

- Treat it as a system of equations machine and find stuff.
- Substitution: To find $f(0)$ or $f(1)$ or whatever, get stuff to cancel. Try substituting all 0 or all 1 .
- Involutions: if we have $f(x)$ and $f(a-x)$ and we're finding $f(c)$, then substituting $x=c$ and $x=a-c$ gives two equations. Similar: $f(x)$ and $f(1 / x)$ means substituting $x=c$ and $1 / c$. Functions where $f \circ f(x)=x$ are called involutions.
- Induction: if we have $f(x)$ and $f(x+1)$ and you know $f(0)$, you can find any $f(n)$ for any natural n.
- Cheat: if only one function satisfies the conditions (i.e. there's only one possible answer), then just find one and use that. Try linear functions, constants, etc.
- Cauchy FE: if $f(x+y)=f(x)+f(y)$ for $x, y \in \mathbb{Q}$ then $f(x)=k x$ for some constant k. Making it reals is harder, it works if you have either bounding, monotonicity, or continuity.

