VCSMS PRIME

Program for Inducing Mathematical Excellence Session 5: Trigonometry September 28, 2017

Lecture problems

- 1. (AIME 1995/7) Given $(1 + \sin t)(1 + \cos t) = \frac{5}{4}$, find $(1 \sin t)(1 \cos t)$.
- 2. (QI9) Evaluate the following sum: $1 + \cos \frac{\pi}{3} + \cos \frac{2\pi}{3} + \cos \frac{3\pi}{3} + \cdots + \cos \frac{2016\pi}{3}$.
- 3. (Huang¹) Divide $\sin 3x (2\cos 2x 1)$ by $\sin x (2\cos 4x + 1)$ and simplify.
- 4. (AIME 1996/10) Find the smallest positive integer solution to $\tan 19x^{\circ} = \frac{\cos 96^{\circ} + \sin 96^{\circ}}{\cos 96^{\circ} \sin 96^{\circ}}$.
- 5. (AI6) Find the exact value of $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$.
- 6. (Morrie's Law) Simplify $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$.
- 7. Find the exact value of $\cos \pi/5$.
- 8. (PEM 2016/10) Find the ratio of $\sin 1^{\circ} + \sin 2^{\circ} + \cdots + \sin 44^{\circ}$ to $\cos 1^{\circ} + \cos 2^{\circ} + \cdots + \cos 44^{\circ}$.
- 9. (Stewart's Theorem) In triangle ABC, point D is on line BC. Let AD = d, BD = m and CD = n. Then man + dad = bmb + cnc.

As ratios of sides

- In terms of triangles: sine, cosine, tangent, secant, cosecant, cotangent, are ratios of sides. Example: find $\tan \alpha$ given $\sin \alpha = \frac{1}{2}$. This is the classical development in classroom math.
- Values for special angles: 30° , 45° , 60° can be derived from special right triangles $30^{\circ} 60^{\circ} 90^{\circ}$ (equilateral triangle), and $45^{\circ} 45^{\circ} 90^{\circ}$ (square). We can get 0° and 90° from reasoning.
- Identities: cofunctions, Pythagorean identities.
- Problem 1: Abuse symmetry: replace sums and products with variables. Pythagorean identity.

As lengths in a circle

- In terms of circles: the functions are lengths in the unit circle: $(\sin \theta, \cos \theta)$. Tangent is the length of the tangent to x-axis, cotangent is length to y-axis. Secant and cosecant are x and y intercepts.
- Problem 2: Radians are more natural than degrees: 2π radians is 360° .
- Identities: reflection over $0, \frac{\pi}{4}, \frac{\pi}{2}$, shifts by $\frac{\pi}{2}, \pi, 2\pi$, Pythagorean identities, $\csc^2 \theta + \sec^2 \theta = (\cot \theta + \tan \theta)^2$.

As complex numbers

- Euler's identity says $e^{ix} = \cos x + i \sin x$. Cosine is the real part and sine is the imaginary part.
- If $z = e^{ix}$ then $1/z = e^{-ix}$. We can state $\cos x$ and $\sin x$ in terms of z only. Also, by de Moivre, $(e^{ix})^n = \cos nx + i \sin nx$. We can find $\cos nx$ and $\sin nx$ in terms of z only.
- Identities: reflection, Pythagorean identities.
- Problem 3: Let $z = e^{ix}$. Substitute sine and cosine. Everything cancels nicely.

¹From Complex Numbers in Trigonometry, https://aops.com/community/c6h609795. Read it, it's good.

Sum and difference

- Fundamental is $\sin(x+y)$. Many derivations: stick two right triangles with angles x, y and common side and find the area; use the unit circle and rotate; Euler's identity.
- Derive $\sin(x \pm y)$, $\cos(x \pm y)$, $\tan(x \pm y)$, $\cot(x \pm y)$. Triple tangent formula: $x + y + z = \pi$ iff $\tan x + \tan y + \tan z = \tan x \tan y \tan z$.
- Problem 4: Inspired by tangent sum formula. Force tangent by dividing by $\cos 96^{\circ}$ and $\tan 45^{\circ} = 1$.
- Inverses for trigonometric functions exist. Derive $\tan^{-1} x \pm \tan^{-1} y$, $\cot^{-1} x \pm \cot^{-1} y$ by subtituting in the sum and difference formulas.
- Problem 5: The shortcut for $\tan^{-1}(p_1/q_1) + \tan^{-1}(p_2/q_2)$ is "cross multiply and add for numerator, product of denominators minus product of numerators for denominator."
- Derive $\sin 2x$. Write $\cos 2x$ in three ways using Pythagorean identity, and use that to derive half-angle formulas. (Sine is minus, same as in complex numbers.) There is also derivation with Euler's formula.
- Problem 6: The doubling inspires us to force double angle formula. Let expression be x and multiply both sides by $2 \sin 20^{\circ}$. (Interestingly, $\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ} = \tan 60^{\circ}$.)
- Problem 7: This is important. Let $a = \cos \pi/5$ and $b = \cos 2\pi/5$. Then use double angle formulas on a and b, but $\cos 4\pi/5 = -\cos \pi/5 = -a$.

Prosthaphaeresis

- Greek *prosthesis* means addition, *aphaeresis* means subtraction. Which is how you derive them: $\cos x \cos y$, $\sin x \sin y$, $\sin x \cos y$ by cancelling out $\cos(x+y)$ and $\cos(x-y)$, etc.
- Reverse formulas: find $\sin x \pm \sin y$ by reversing the prosthaphaeresis formulas. As in, let x' = x y and let y' = x + y and rewrite.
- Problem 8: Looks like arithmetic sequence. We did arithmetic sequence by pairing up opposite terms. Here, we pair sin 1° and sin 44° and use sum-to-product, etc. Everything cancels.

Laws

- Extended law of sines: draw the circumradius and use the definition of sine. Law of cosines: drop an altitude use the Pythagorean theorem twice.
- Problem 9: Apply law of cosines twice: on $\triangle ABD$ and $\triangle BCD$.

As functions

- Sine and cosine: domain is \mathbb{R} , range is $\{-1,1\}$. Period 2π . Graphs are translations of each other.
- Cosecant and secant graphs are like a bunch of parabolas. Cosecant domain is $\mathbb{R} \{n\pi, n \in \mathbb{Z}\}$ and secant domain is $\mathbb{R} \{(2n+1)\pi/2, n \in \mathbb{Z}\}$. Range is $(-\infty, -1] \cup [1, \infty)$.
- Tangent and cotangent: tangent domain is $\mathbb{R} \{(2n+1)\pi/2, n \in \mathbb{Z}\}$ and cotangent domain is $\mathbb{R} \{n\pi, n \in \mathbb{Z}\}$. Range is \mathbb{R} .
- Inverse functions: arcsin and arccos are domain [-1,1]. Arcsin has range $\{-\pi/2,\pi/2\}$, arccos has range $\{0,\pi\}$. Arctan has domain \mathbb{R} and range $\{-\pi/2,\pi/2\}$: it maps the whole real line onto a finite interval.
- This means we need to be careful in solving equations like $\sin x = 1/2$, because there are infinitely many solutions. Also, $\sin^{-1} x + \cos^{-1} x = \pi/2$ and stuff like $\sin(\cos^{-1} x) = \sqrt{1-x^2}$.

deg	rad	sin	cos	tan
0°	0			
15°	$\frac{\pi}{12}$			
18°	$\frac{\pi}{10}$			
22.5°	$\frac{\pi}{8}$			
30°	$\frac{\pi}{6}$			

\deg	rad	sin	cos	tan
36°	$\frac{\pi}{5}$			
45°	$rac{\pi}{4}$			
60°	$\frac{\pi}{3}$			
90°	$\frac{\pi}{2}$			
180°	π			

Pythagorean identity: $\sin^2 \theta + \cos^2 \theta =$ _____

Dividing by $\sin^2 \theta$ gives: _____

Dividing by $\cos^2 \theta$ gives: _____

Sum and difference:

 $\sin(x \pm y) = \underline{\hspace{1cm}}$

 $\cos(x \pm y) = \underline{\hspace{1cm}}$

 $\tan(x \pm y) = \underline{\hspace{1cm}}$

 $\cot(x \pm y) = \underline{\hspace{1cm}}$

Arctans:

 $\tan^{-1} x + \tan^{-1} y =$ Sum-to-product:

 $\cot^{-1} x + \cot^{-1} y = \underline{\qquad} \qquad \sin x \pm \sin y = \underline{\qquad}$

 $\tan^{-1}\frac{p_1}{q_1} + \tan^{-1}\frac{p_2}{q_2} = \underline{\qquad} \cos x + \cos y = \underline{\qquad}$

Half-angle:

 $\sin\frac{x}{2} = \underline{\hspace{1cm}}$

 $\cos \frac{x}{2} = \underline{\hspace{1cm}}$

Double angle:

 $\sin 2x =$

 $\cot 2x =$

Product-to-sum:

 $2\cos x\cos y =$

 $2\sin x \sin y = \underline{\hspace{1cm}}$

 $2\sin x \cos y =$

 $\cos x - \cos y =$

Law of sines:

Law of cosines: