VCSMS PRIME

Program for Inducing Mathematical Excellence
Session 8: Algebraic Manipulation
October 6, 2017

Lecture problems

1. (AI14) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=(2 x-y, x+2 y)$. Let $f^{0}(x, y)=(x, y)$ and, for each $n \in \mathbb{N}$, $f^{n}(x, y)=f\left(f^{n-1}(x, y)\right)$. Determine the distance between $f^{2016}(4 / 5,3 / 5)$ and the origin.
2. Solve the equation $x^{4}+(x-2)^{4}+16=0$.
3. Factorize $x^{3}+y^{3}-3 x y+1$.
4. (Sipnayan 2016) Find all x satisfying $\sqrt[3]{20 x+\sqrt[3]{20 x+\sqrt[3]{20 x+16}}}=16$.
5. (AIME 1990/4) Solve $\frac{1}{x^{2}-10 x-29}+\frac{1}{x^{2}-10 x-45}-\frac{2}{x^{2}-10 x-69}=0$.
6. Factorize $(x+y-2 z)^{3}+(y+z-2 x)^{3}+(z+x-2 y)^{3}$.
7. (ARML 2016) Factorize $13^{4}+16^{5}-172^{2}$, given it is the product of three distinct primes.
8. (AI9) Find the integer which is closest to the value of $\left(\sqrt[6]{5^{6}+1}-\sqrt[6]{5^{6}-1}\right)^{-1}$.
9. Given $x^{2}-3 x+1=0$, find the value of $x^{5}+x^{-5}$.
10. Solve the equation $x^{4}-6 x^{3}-11 x^{2}-6 x+1=0$.
11. Prove that the product of four consecutive integers plus one is always a perfect square.
12. (MMC) Given $6 x^{2}+47 x+77=(2 x+11)(3 x+7)$, factorize 64,777 .
13. Suppose $x+3 y=3, y+3 z=4$, and $z+3 x=5$. Find x.
14. (AII1) Let x and y satisfy $\frac{x}{x^{2} y^{2}-1}-\frac{1}{x}=4$ and $\frac{x^{2} y}{x^{2} y^{2}-1}+y=2$. Find all possible values of $x y$.
15. (AIME 1989/8) Find $16 x_{1}+25 x_{2}+36 x_{3}+49 x_{4}+64 x_{5}+81 x_{6}+100 x_{7}$ given that

$$
\begin{aligned}
x_{1}+4 x_{2}+9 x_{3}+16 x_{4}+25 x_{5}+36 x_{6}+49 x_{7} & =1 \\
4 x_{1}+9 x_{2}+16 x_{3}+25 x_{4}+36 x_{5}+49 x_{6}+64 x_{7} & =12 \\
9 x_{1}+16 x_{2}+25 x_{3}+36 x_{4}+49 x_{5}+64 x_{6}+81 x_{7} & =123
\end{aligned}
$$

16. (AIME 1990/15) Let $f(n)=a x^{n}+b y^{n}$. Given $f(1)=3, f(2)=7, f(3)=16, f(4)=42$, find $f(5)$.
17. (AIME 2014/14) Find all real solutions to $\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-11 x-4$.

Abusing symmetry again

- Algebraic manipulation - substitution, factorization, manipulation - usually only has one end goal. To create symmetry. (Almost) all of the problems today deal with this.

Substitution

- Problem 1: Substituting $x, y \rightarrow 2 x-y, x+2 y$ directly to $\sqrt{x^{2}+y^{2}}$ shows that it's multiplied by $\sqrt{5}$ each time. The symmetry arises when the terms in $(2 x-y)^{2}$ and $(x+2 y)^{2}$ cancel.
- Problem 2: We force symmetry by substituting $x \rightarrow y+1$. The terms in $(y+1)^{2}$ and $(y-1)^{2}$ cancel.
- Problem 3: Exchanging any two variables keeps the expression the same, which means it's symmetric. When dealing with symmetric expressions, we usually try substituting $x+y, x y \rightarrow a, b$, because of the Fundamental Theorem of Symmetric Polynomials. This is $a^{3}-3 a b-3 b+1$, and there's an $a+1$ factor.
- Problem 4: Substitution again. You substitute the whole expression into the 16 in the innermost infinitely many times, to get $\sqrt[3]{20 x+\sqrt[3]{20 x+\cdots}}=16$, which is more symmetric. Then substitute 16 for the whole expression to get $\sqrt[3]{20 x+16}=16$.
- Problem 5: By letting $x^{2}-10 x-29 \rightarrow a$, and then multiplying out, it's much easier.

Factorization

- Problem 6: There are a few factorizations you are expected to know, and one of them is $a^{3}+b^{3}+c^{3}-3 a b c=$ $(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$. But when $a+b+c=0$, this becomes $a^{3}+b^{3}+c^{3}=3 a b c$.
- Problem 7: Use Sophie-Germain: $a^{4}+4 b^{4}=\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right) .16^{5}$ is 2^{20} and $13^{4}-172^{2}$ is $1-2^{10}$ via difference of two squares. Multiply both sides by $2^{10}+1$ and then factor using Sophie-Germain on $1^{4}+4 \cdot\left(2^{7}\right)^{4}$.
- Problem 8: Factor $2=\left(5^{6}+1\right)-\left(5^{6}-1\right)$ using difference of two squares, then two cubes.

Manipulation

- Problem 9: Divide both sides by x to get $x+1 / x=3$. There are several ways to get $x^{5}+x^{-5}$. We can take the fifth power and use the smaller powers, or we can recurse more generally by relating $x^{n}+x^{-n}$ and $x^{n+1}+x^{-(n+1)}$.
- Problem 10: Divide both sides by x^{2} and use the substitution $x+1 / x \rightarrow a$.
- Problem 11: Suppose the smallest was n. Then $n(n+1)(n+2)(n+3)+1$. To make it easier, pair multiply $n(n+3)$ and $(n+1)(n+2)$, then substitute $n^{2}+3 n+2 \rightarrow a$.
- Problem 12: Substitute $x=100$.
- Problem 13: Add all the equations and divide by 5 to find $x+y+z=12 / 5$. Subtract from the second to eliminate y and use the third to find x.
- Problem 14: Force symmetry, multiply the first by $x y$ and subtract from the second. Solve for y in terms of x, substitute, simplify.
- Problem 15: Remember the method of finite differences? The perfect squares are quadratic, so the second difference is constant.
- Problem 16: We want to relate $f(n)$ and $f(n+1)$. Like we did in Problem 9 for $x^{n}+x^{-n}$ and $x^{n+1}+x^{-(n+1)}$, we can see $f(n)(x+y)=f(n+1)+x y f(n-1)$.
- Problem 17: The key idea is to add 4 to both sides. The fraction $3 /(x-3)$ becomes $x /(x-3)$, etc. Cancel out x and substitue $x \rightarrow y+11$ for symmetry. Add opposite terms and cancel out y.

