VCSMS PRIME

Program for Inducing Mathematical Excellence

Week 1 Homework
Due September 20, 2017

Homework

Each person is assigned two sets based on their problem-solving level. For the first set assigned to you, you only need to submit your answers. For the second set, you must submit neat and orderly solutions for each problem. Write your answers on short bond paper, write your name, and leave margins.

Problems refer to VCSMS PRIME 2016, on http://cjquines.com/files/prime.pdf, which is also posted in our Facebook group. For example, "S9: Circles 3-5, 7" means problems 3, 4, 5 and 7 in the Circles section of PRIME 2016 session 9.

Due on Week 1 due date: Wednesday, September 20.
Set A (13) S1: Domain and Range 5; Logarithms 1-2; Exponents 1-2; Value-finding 1.
S7: Angles 1; Areas 1-3. S8: Surds 1-3.
Set B (15) S1: Domain and Range 6-7; Logarithms 3-6; Exponents 3-4; Floor, ceiling, fractional 1. S5: Equations 7. S7: Angles 2-3; Areas 4-5. S8: Surds 4.

Set C (16) S1: More logarithms: 1-2, 6-7; Floor, ceiling, fractional 2; Value-finding 2-3; Cauchy functional equation 1-3. S5: Equations 8. S7: Angles 4; Areas 6-8. S8: Surds 5.

Set \mathbf{D} (14) S1: More logarithms: 3-5; Floor, ceiling, fractional 3; Other functional equations 1-5. S7: Angles 5; Areas 9-11. S8: Surds 6.

Additional problems

These problems are optional. They range from easy to very hard.

1. $A B C$ is an isosceles triangle such that $A C=B C . C B D$ is an isosceles triangle such that $C B=D B$. A and D are on the same side of line $B C$, and segments $B D$ and $A C$ intersect at a right angle. If $\angle A=57^{\circ}$, what is $\angle D$?
2. Quadrilateral $C F D E$ is inscribed in a circle with center O, which lies on segment $C D$. Lines $C E$ and $D F$ intersect at A and lines $D E$ and $C F$ intersect at B. If $\angle E A D=40^{\circ}$ and minor arc $E D$ measures 40°, find $m \angle D A B$.
3. Two equilateral triangles $A B C$ and $A D E$ are drawn, both with side length 4 , such that segments $D E$ and $B C$ intersect and $A D$ and $B C$ are perpendicular. Find the area of the region common to both triangles.
4. Pentagon $A B C D E$ with side lengths $A B=B C=C D=10, D E=$ $16, E A=12$ is inscribed in a circle. If $\angle D E A=90^{\circ}$, find its area.
5. (Mathira 2017) In the figure to the right, the nine circles all have radius 1 and adjacent circles are either externally tangent or pass through each others' centers. Find the area of the shaded region.
6. (AII2) Let $B H$ be the altitude from the vertex B to the side $A C$ of an acute-angled triangle $A B C$. Let D and E be the midpoints of $A B$ and $A C$, respectively, and F the reflection of H across the line segment $E D$. Prove that the line $B F$ passes through the circumcenter of $\triangle A B C$.

