VCSMS PRIME

Program for Inducing Mathematical Excellence

Week 3 Homework
Due October 4, 2017

Homework

Due on Wednesday, October 4. The additional problems this week are required based on your set.
Set A (13) S2: Circular functions 1-2; Identities 1-2; Triangle laws 1-2.
S7: Circles 1-3; Three-dimensional 1. Additional problems: 1-3.
Set B (13) S2: Circular functions 3-4; Identities 3; Equations 1-2; Triangle laws 3.
S7: Circles 4-5; Three-dimensional 2-3. S9: Ad hoc 1; Triangles 1. Additional problems: 4.
Set C (13) S2: Identities 4-5, 7; Equations 3-6; Triangle laws 4.
S7: Circles 6; Three-dimensional 4. S9: Ad hoc 2; Triangles 2. Additional problems: 5.
Set D (13) S2: Identities 6; Equations 7-8; Triangle laws 5-6.
S7: Three-dimensional 5. S9: Ad hoc 3-5; Triangles 3-5. Additional problems: 6.

Additional problems

Again, the additional problems this week are required. Set A has $1-3$, set B has 4 , set C has 5 and set D has 6 .

1. Vincent is solving a problem: "Two circles have radii 3 and 27 , and the length of a common external tangent is 40 . What is the distance of their centers?" However, he misread and thought it was "common internal" tangent, and answered the problem correctly assuming this. What is the difference between Vincent's answer and the actual correct answer?
2. (AIME 1994/2) A circle with diameter $P Q$ of length 10 is internally tangent at P to a circle of radius 20. Square $A B C D$ is constructed with A and B on the larger circle, $C D$ tangent to Q to the smaller circle, and the smaller circle outside $A B C D$. Find the length of $A B$.
3. (AIME 1991/2) Rectangle $A B C D$ has $A B=4$ and $C B=3$. Divide $A B$ into 168 congruent segments with points $A=P_{0}, P_{1}, \ldots, P_{168}=B$, and divide $C B$ into 168 congruent segments with $C=Q_{0}, Q_{1}, \ldots, Q_{168}=B$. For $1 \leq k \leq 167$, draw the segments $P_{k} Q_{k}$. Repeat this construction on the sides $A D$ and $C D$, and then draw the diagonal $A C$. Find the sum of the lengths of the 335 parallel segments drawn.
4. (AHSME 1970) In trapezoid $A B C D$, we have $A B \| C D$ and $\angle B=2 \angle D$. The length of $A B$ can be represented as k times the length of $A D$ plus ℓ times the length of $C D$. What is $k+\ell$?
5. (AIME 1998/6) Let $A B C D$ be a parallelogram. Extend $D A$ through A to a piont P, and let $P C$ meet $A B$ at Q and $D B$ at R. Given that $P Q=735$ and $Q R=112$, find $R C$.
6. A quadrilateral circumscribed about a circle has two adjacent right angles. The sides adjacent to one right angle have lengths 4 and 7 . Find the radius of the inscribed circle.

Additional reading

- Complex Numbers in Trigonometry, https://aops.com/community/c6h609795.
- Characterizations of Trapezoids, http://forumgeom.fau.edu/FG2013volume13/FG201305.pdf.

