VCSMS PRIME

Program for Inducing Mathematical Excellence
Week 4 Homework
Due October 11, 2017

Homework

Due on Wednesday, October 11. We have five sets this week, solve the two assigned to you as usual.
Set A (12) S4: Ad hoc 1, 4. S5: Equations 1-2; Systems of equations 1-2; Polynomials 1; Polynomial factors 3. S8: Manipulation 1-2; Sequences 1; Series 1.

Set B (12) S4: Ad hoc 6. S5: Equations 3; Systems of equations 3-4. S8: Manipulation 5; Sequences 2-4; Series 2-5.

Set C (12) S4: Ad hoc 7. S5: Equations 5-6. S8: Manipulation 3-4; Series 6, 8; Inequalities 1;
Single-variable extrema 2; Multi-variable extrema 1-2, 5 .
Set D (12) S4: Ad hoc 8. S5: Equations 4; Systems of equations 5. S8: Manipulation 6-7; Sequences 5; Series 7; Single-variable extrema 1, 4; Multi-variable extrema 3-4, 7 .

Set E (13) S5: Vieta's 7. S8: Manipulation 8; Sequences 6-7; Series 9; Inequalities 2-5; Single-variable extrema 5; Multi-variable extrema 7-9.

Additional problems

1. (AIME 2005/7) Let $x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}$. Find $(x+1)^{48}$.
2. (SMO 2011) Find $a^{2}+b^{2}+c^{2}-a b-b c-c a$ if $a=2011 x+9997, b=2011 x+9998$ and $c=2011 x+9999$.
3. (Titu 1997) Prove that $\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{9997}+\sqrt{9999}}>24$.
4. (AIME 1989/7) Find an integer k such that $36+k, 300+k$ and $596+k$ are the squares of three consecutive terms of an arithmetic series.
5. (SMO 2006) Let a, b be positive reals such that $\frac{1}{a}-\frac{1}{b}-\frac{1}{a+b}=0$. Find $\left(\frac{a}{b}+\frac{b}{a}\right)^{2}$.
6. Evaluate $1!\left(1^{2}+1+1\right)+2!\left(2^{2}+2+1\right)+\cdots+2017!\left(2017^{2}+2017+1\right)$.
7. (AIME I 2013/5) Find the real root of $8 x^{3}-3 x^{2}-3 x-1=0$.
8. Prove that $\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{99}{100}<\frac{1}{10}$.
9. Find the maximum of $2^{x}+3^{x}-4^{x}+6^{x}-9^{x}$.
10. How many nonempty subsets of $\{1,2, \ldots, 1000\}$ have sum divisible by 3 ?
11. (OMO Spring 2014/25) Compute $\sum_{n=1}^{\infty} \frac{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}}{\binom{n+100}{100}}$.

Additional reading

- Summations (Evan Chen), http://web.evanchen.cc/handouts/Summation/Summation.pdf.
- A Potpourri of Algebra, https://www.scribd.com/document/82663491/A-Potpourri-of-Algebra

