
Sledgehammers in number theory
CJ Quines

June 15, 2023

Do you like the feeling of killing flies with bazookas? Have you ever
wanted to learn theorems that are useful in olympiad number theory but
are too powerful to cite? Are you interested in reading things that can
be actively harmful for your competition math career? Then I have the
perfect handout for you. . .

1. Notation
Standard notation I’ll use:

• N is the set of positive integers.

• Z[x] is the set of polynomials with integer coefficients.

• {an}Nn=1 is {a1, a2, . . . , aN}. We’ll also write {an}n≥1 for {an}∞n=1.

Less standard notation I’ll use:

• P is the set of primes.

• P(S), or the prime divisors of S, is the set of p ∈ P such that there’s some
s ∈ S with s 6= 0 and p | s. (Why do we have to say s 6= 0?)

Abuses of notation:

• We write {an} for {an}n≥1 because it’s so common. For example, the odd positive
integers are {2n− 1}. We’ll never write sets with one element, so there should
be no risk of confusion.

• We write P{an} instead of P({an}).

When stating results, I’ll rate them with their “citability”, which is how fine I’d be
citing it in a solution for an oly problem, and “usefulness”, which is how applicable I
think it is. These are scaled from 1 to 5, where 1 is least and 5 is most, rated based
on a completely subjective assessment I totally made up. For example:

Theorem. Irrationality of
√
2. Citability: 5 Usefulness: 1

There are no p, q ∈ Z such that
√
2 = p/q.

I hope you’re fine with treating results as black boxes, because I’ll be skipping lots
of proofs. Here we go.
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2. Hammers
2.1. Chebotarev density theorem
Stating the Chebotarev density theorem in full generality needs Galois theory. There’s
a bunch of weaker versions of Chebotarev, like the Frobenius or Kronecker density
theorems (which also need Galois theory), or the density version of Dirichlet’s theorem,
which we cover later.

I have this section for two reasons. First, when I later mention Chebotarev, you’ll
know what I’m referring to. Second is to define the notion of density in the first place.
If S ⊆ P, then there’s two notions of S’s density. The first is natural density:

δ(S) = lim
N→∞

|{p ∈ S, p ≤ N}|
|{p ∈ P, p ≤ N}|

,

and the second is Dirichlet density:

δ′(S) = lim
s→1+

∑
p∈S

1
ps∑

p∈P
1
ps

.

Dirichlet density looks weird, but it’s easier to work with analytically, which is why
most results below actually use Dirichlet density. There’s a result that says that if δ(S)
exists, then it is equal to δ′(S). The converse isn’t true, but you probably won’t run
into the counterexamples in practice. We’ll thus be lazy and conflate the two notions
of density; if you’re making a density argument it doesn’t matter anyway.

2.2. Schur-type results
Here’s something I’ll feel no qualms citing in an olympiad:

Theorem. Schur’s theorem. Citability: 5 Usefulness: 4
If f ∈ Z[x] is nonconstant, then P{f(n)} is infinite.

There are many proofs of this. I’ll cite a result of Elsholtz in [Els12], which is
stronger than Schur and has an elementary counting proof:

Theorem. Schur’s theorem (growth). Citability: 1 Usefulness: 1
Suppose that {an} has:

• subexponential growth: for all ε > 0, we have an ≤ 2n
ε as n → ∞, and

• almost-injectivity: there’s some c such that each integer appears in {an} at most
c times.

Then P{an} is infinite.

Proof. We prove a special case, assuming an > 0 and that it’s almost-injective with
c = 1. These conditions means that a1, . . . , an have n distinct values. Suppose
P{an} = {p1, . . . , pk}. The main idea is to count possible prime factorizations, and
show it’s too few compared to the n we need. If we factorize an as

∏
peii , we must

have ei < nε due to subexponential growth. That means that there’s at most (nε)k

prime factorizations, which for large n, is too few.

2
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The growth version covers, for example,
{⌊

πn2
⌋}

, which Schur alone doesn’t. This
combinatorial proof is similar to Erdős’s proof there are infinitely many primes, which
I recount in [Qui19].

We can also strengthen Schur to specify the density, as a corollary of Chebotarev:

Theorem. Schur’s theorem (density). Citability: 1 Usefulness: 3
If f ∈ Z[x] is nonconstant, then P{f(n)} has density at least 1

deg f .

If you want a reference, check the upper bound in Lemma 3 of [BL06].

2.3. Anti-Schur-type results
If f ∈ Z[x], then saying that p ∈ P{f(n)} is the same as saying that f(x) ≡ 0 (mod p)
has a solution, or in other words, it has a root modulo p. Thus, Schur can be restated
as “a nonconstant polynomial has roots modulo infinitely many primes.”

Can we say things about primes that f doesn’t have roots in, or the set P \P{f(n)}?
We should rule out the case where f has a linear factor (in Q): for example, 6x− 1 has
a root modulo every prime except 2 and 3. The tentative claim is then: a polynomial
without linear factors has no roots modulo infinitely many primes.

Unfortunately, this isn’t true. A counterexample is (x2− 2)(x2− 3)(x2− 6), because
modulo any prime, at least one of 2, 3, and 6 is a quadratic residue. So “without linear
factors” is too weak of an assumption. The correct result requires an irreducible
polynomial, one that can’t be factored as the product of two nonconstant polynomials:

Theorem. Anti-Schur’s theorem. Citability: 1 Usefulness: 1
If f ∈ Z[x] is irreducible with deg f ≥ 2, then P \ P{f(n)} is infinite.

Another way to say this is that if f ∈ Z[x] has roots modulo every prime, then it’s
either reducible or linear. The previously cited Lemma 3 of [BL06] gives a density
version of anti-Schur in its lower bound:

Theorem. Anti-Schur’s theorem (density). Citability: 1 Usefulness: 1
If f ∈ Z[x] is irreducible with deg f ≥ 2, then P \ P{f(n)} has density at least 1

(deg f)! .

As an aside, x8 − 16 is another counterexample to our earlier claim; it factorizes
as (x2 − 2)(x2 + 2)(x4 + 4), which for similar reasons also has a root modulo any
prime. This also serves as a counterexample to “if something is an nth power modulo
every prime, it’s an nth power.” This statement is almost true. The Grunwald–Wang
theorem classifies the exceptions, and in the Q case, we get:

Theorem. Grunwald–Wang theorem (for Q). Citability: 1 Usefulness: 1
Suppose a is an nth power modulo a set of primes with density 1. Then either a is an
nth power, or 8 | a and a = 2n/2bn for some b.

See the discussion in 9.B of [AD12].

3
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2.4. Kobayashi’s theorem
While Schur-type results prove that the prime divisors of many integer sequences are
infinite, there’s some that it doesn’t cover, like P{2n + 1}, or P

{
22

n
+ 1

}
, or P{b10nπc}.

I think it’s open whether the third set is infinite, but the first two are covered by
Kobayashi’s theorem:

Theorem. Kobayashi’s theorem. Citability: 3 Usefulness: 3
Let t ∈ Z be nonzero and {an} unbounded. If P{an} is finite, then P{an + t} is infinite.

Kobayashi’s original paper [Kob81] is one that’s well-known-ish in olympiad circles,
but I can only find one other paper that cites it, [Mor90]. I also can’t find anything
Hiroshi Kobayashi did outside this paper. The affiliation given is “Ebina Highschool”,
which is not only a high school, but one I can’t find any records of.

No elementary proof of Kobayashi is known, but somehow it’s wormed its way into
olympiad canon, which raises its citability by a bit. Kobayashi’s original proof uses
Siegel’s theorem. There’s a nice proof by mavropnevma in [Sch11] that uses Thue’s
theorem, which I’ll state in subsection 2.5. mavropnevma’s proof is nice enough (and
the trick common enough) that I’ll reproduce it:

Proof. Write an = ax3 and an+ t = by3 for a and b cubefree.1 If P{an} and P{an + t}
are finite, there’s only finitely many possible a and b, and hence a finite number of
equations by3 − ax3 = t. By Thue, each has a finite number of solutions, contradicting
the fact that {an} is unbounded.

2.5. Roth’s theorem
Let’s take a brief digression to talk about Thue, and its generalization Roth’s theorem.
We call a polynomial homogeneous if each term has the same degree, like in x2+xy+y2.
The set of two-variable degree-d homogeneous polynomials is written Zd[x, y]. For
k ∈ Z and f ∈ Zd[x, y], we want to study the Diophantine equation f(x, y) = k.

The method for solving these depends on d. When d = 1 this is elementary. When
d = 2 it usually reduces to a generalized Pell equation, see for example [Dju07]. And
when d ≥ 3 we have Thue:

Theorem. Thue’s theorem. Citability: 1 Usefulness: 2
Let d ≥ 3 and k ∈ Z. If f ∈ Zd[x, y] is irreducible, then f(x, y) = k has finitely many
integer solutions.

These days it’s proven as a consequence of the stronger Roth’s theorem. The idea
is that if f(x, y) = k, then f(x/y, 1) = k/yd. If y is large, then k/yd is close to 0, so
we’d get that x/y approximates some root α of f(α, 1) = 0, and Roth would finish.

To state Roth, we first define an algebraic number. We say that α ∈ R is algebraic
if there’s some f ∈ Z[x] such that f(α) = 0. Roth tells us that algebraic numbers
can’t have many “good” approximations:

1A number is cubefree if each exponent of a prime in its prime factorization is at most 2. Alternatively,
a number is cubefree if it’s not divisible by a perfect cube other than 1.

4
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Theorem. Roth’s theorem. Citability: 1 Usefulness: 1
Let α ∈ R \Q be algebraic. Then for every ε > 0, there’s only finitely many solutions
to ∣∣∣∣α− x

y

∣∣∣∣ < 1

y2+ε

with relatively prime x, y.

Roth is a deep theorem from Diophantine geometry, where algebraic geometry
methods are used to tackle Diophantine equations; see Appendix A for an overview.

2.6. Zsigmondy sets
Kobayashi shows that P{2n + 1} is infinite, but we can say more than that. Call p a
primitive prime divisor of some sequence {an} if p | an but p - ak for every k < n.
Because P{2n + 1} is infinite, we expect there to be infinitely many primitive prime
divisors as well. Zsigmondy’s theorem says that primitive divisors aren’t just infinite;
almost all terms have them.

Given a sequence {an}, we define its Zsigmondy set Z{an} as the set of n ≥ 1
such that an doesn’t have a primitive prime divisor. In other words, n ∈ Z{an} if
p | an implies p | ak for some k < n. Then:

Theorem. Zsigmondy’s theorem. Citability: 4 Usefulness: 5
If a and b are relatively prime, then Z{an − bn} ⊆ {1, 2, 6}. In particular:

• 1 ∈ Z{an − bn} iff a− b = 1,
• 2 ∈ Z{an − bn} iff a+ b is a power of 2, and
• 6 ∈ Z{an − bn} iff a = 2 and b = 1.

Similarly, Z{an + bn} = ∅, with the exception of 23 + 13.

Zsigmondy is an elementary result; see [Mic14] for a proof. There’s other theo-
rems about Zsigmondy sets. The most useful one for olympiads would probably be
Carmichael’s theorem:

Theorem. Carmichael’s theorem. Citability: 2 Usefulness: 1
Let p and q be relatively prime with p2 > 4q and pq 6= 0. Define {un} by u0 = 0,
u1 = 1, and un = pun−1 − qun−2. Then Z{un} ⊆ {1, 2, 6, 12}.

The {un} here is known as a Lucas sequence of the first kind; it’s usually written
{Un(p, q)}. Carmichael is again an elementary result, see [Yab01].

2.7. Bertrand-type results
There’s a verse about Bertrand’s postulate by NJ Fine which goes “Chebyshev said
it, but I’ll say it again / There’s always a prime between n and 2n.” Actually, what
Bertrand conjectured and Chebyshev proved was a mildly stronger version:

5
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Theorem. Bertrand’s postulate. Citability: 5 Usefulness: 3
If n > 3, then there’s some prime p such that n < p < 2n− 2.

Although it’s not the first proof, it’s Erdős’s proof of Bertrand that is the most
famous, in part because it’s elementary. The idea is to show that

(
2n
n

)
must have a

prime factor between n and 2n due to size; see [Bog18] for an exposition.
A stronger result, in the direction of having a smaller interval, is Sylvester–Schur:

Theorem. Sylvester–Schur theorem. Citability: 4 Usefulness: 1
If n ≥ 2k, then

(
n
k

)
has a prime divisor greater than k.

The famous proof is Erdős’s, [Erd34]. In [Han73], it’s shown that it has a prime
divisor greater than 3

2k, with exceptions
(
4
2

)
,
(
9
2

)
, and

(
10
5

)
. Both results are elementary.

2.8. Analytic facts about primes
The prime-counting function π(x) is the number of primes at most x. We then
have the prime number theorem, which is big enough of a deal that it got the name
“prime number theorem”:

Theorem. Prime number theorem. Citability: 4 Usefulness: 2

lim
x→∞

π(x)

x/ log x
= 1.

There are plenty of proofs of PNT you can find at the Wikipedia pageExternal-Link-Alt, some of
which are elementary. This is an ineffective result, because it’s asymptotic. The PNT
tells us that π(2n)− π(n) is on the other of n/ log n for sufficiently large n, but this is
an ineffective result, whereas Bertrand is effective. There are many effective ways to
state PNT, but I think the easiest to remember is Rosser’s theorem:

Theorem. Rosser’s theorem. Citability: 3 Usefulness: 1
The nth prime is at least n log n.

The PNT is a foundational result of analytic number theory, in contrast to algebraic
number theory, although the line between them is fuzzy. The earliest analytic result is
probably Dirichlet’s theorem, which we state using densities:

Theorem. Dirichlet’s theorem (density). Citability: 3 Usefulness: 3
If a and d are relatively prime, then P ∩ {a+ nd} has density 1

ϕ(d) .

I’ll end with an observation. The “typical” first proof you learn of Dirichlet is quite
analytic, drawing from complex analysis to look at L-functions and whatnot. But
Dirichlet is also a consequence of Chebotarev, which needs algebraic number theory.
Fuzzy lines, you know, fuzzy lines.

6
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3. Nails
If I don’t tell you which problems correspond to which theorems, then maybe this
handout will be actually instructive? Who knows. Also, I make no promises that the
theorems above will be helpful.

3.1. Box nails
1. (IMO 2003/6) Let p be a prime number. Prove that there exists a prime number

q such that for every integer n, the number np − p is not divisible by q. Hint: 3

2. (ISL 2000/N4) Find all triplets of positive integers (a,m,n) such that am + 1
divides (a+ 1)n. Hint: 25

3. ([GG98]) Prove that 1, . . . , 2n can be partitioned into n pairs such that the sum
of the numbers in each pair is prime. Hint: 13

4. (USAMO 2008/1) Prove that for each n ∈ N, there are pairwise relatively prime
k0, k1, . . . , kn, all strictly greater than 1, such that k0k1 . . . kn − 1 is the product
of two consecutive integers. Hint: 19

5. (External-Link-Alt) We call an integer p-smooth if its prime divisors are all at most p. For which
p are there infinitely many pairs of consecutive p-smooth numbers? Hint: 11

6. (ISL 2011/N2) Let d1, . . . , d9 be distinct integers and let P (x) = (x+ d1) · · · (x+
d9). Prove there exists some N such that for all x ≥ N , P (x) is divisible by a
prime larger than 20. Hint: 22

7. (IMO 2000/5) Does there exist n ∈ N such that n has exactly 2000 distinct prime
divisors and n | 2n + 1? Hint: 4

3.2. Common nails
8. (ISL 2009/N3) Let f : N → N be nonconstant, and suppose a− b | f(a)− f(b)

for all distinct a, b ∈ N. Show that P{f(n)} is infinite. Hint: 8

9. (External-Link-Alt) Find all f ∈ Z[x] such that f is surjective modulo all sufficiently large primes.
Hint: 18

10. (ISL 2014/N4) Let n > 1 be an integer. Prove that infinitely many terms of the
sequence {ak}k≥1, defined by ak =

⌊
nk/k

⌋
are odd. Hint: 7

11. (TSTST 2018/8) For which integers b > 2 do there exist infinitely many n ∈ N
such that n2 | bn + 1? Hint: 15

12. (APMO 2021/2) For P ∈ Z[x] and n ∈ N, let Pn be the number of positive
integer pairs (a, b) such that a < b ≤ n and n | |P (a)|− |P (b)|. Find all P ∈ Z[x]
such that Pn ≤ 2021 for all n ∈ N. Hint: 20

13. (USAMO 2013/5) Given m,n ∈ N, prove there’s some c ∈ N such that the
numbers cm and cn have the same number of occurrences of each non-zero digit
when written in base ten. Hint: 6

7
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3.3. Drywall nails
14. (DeuX SL N4) Let n ∈ N. Prove there exists some finite S ⊆ N such that:

a) No element of S may be expressed as ab for a ≥ 1 and b > 1.
b) For any prime p there exists s ∈ S and x ∈ Z such that xn ≡ s (mod p).

Hints: 12 27

15. (USAMO 2006/3) For m ∈ Z, let p(m) be the greatest prime divisor of m.
By convention, we set p(±1) = 1 and p(0) = ∞. Find all f ∈ Z[x] such that{
p(f(n2))− 2n

}
is bounded above. Hints: 24 17

16. (ISL 2011/N6) Let P ,Q ∈ Z[x], such that if R ∈ Z[x] with R(x) | P (x) and
R(x) | Q(x), then R is constant. Suppose that for every n ∈ N, P (n) and Q(n)
are positive, and 2Q(n) − 1 | 3P (n)−1. Prove that Q is constant. Hints: 16 10

17. (USAMO 2012/3) For which integers n > 1 does there exist some {an} of nonzero
integers such that ak + 2a2k + · · ·+ nank = 0 holds for every k ∈ N? Hints: 14 26

18. (Balkan 2023/3) Let N = 20232023, and let ω(n) be the number of distinct prime
divisors of n. Find all P ∈ Z[x], such that whenever n ∈ N with ω(n) > N , then
P (n) ∈ N with ω(n) ≥ ω(P (n)). Hints: 1 9 21

19. (ISL 2019/N7+) Prove there exist some c > 0 such that, for all ε > 0, there are
infinitely many n ∈ N with the following property: there are infinitely many
positive integers that cannot be expressed as the sum of fewer than cn2−ε pairwise
coprime nth powers. Hints: 5 23 2

8
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4. Hints
1. Set P (x) = αxmQ(x); want to show Q constant.
2. Use PNT to show that N is large enough relative to n.
3. This is an application of anti-Schur.
4. Induct on 2000, base case 29 + 1.
5. If all nth powers were 0 or 1 mod pe, how many possible residues mod

∏
pe do

we get by summing m of them?
6. 142 857.
7. For even n, pick p ∈ P

{
nnr−1 − 1

}
r≥1

and k = nrp.
8. Let N = f(1)

∏
P{f(n)}, and consider f(kN + 1)− f(n).

9. Make ω(P (n)) big relative to ω(n) by setting n as a product of specific primes.
10. Show that infinitely many primes divide 3P ((aordp(2),bordp(3)) − 1.
11. Imitate the Kobayashi proof.
12. The additive structure is unused, so take a primitive root mod p.
13. Construct so that most pairs sum to the same prime.
14. If we constrain aij = aiaj , we only need to define on primes.
15. Answer is all except 2k − 1. Compare IMO 2000/5.
16. What can you say about P (n+ aordp(2) + bordp(3))?
17. Show that there’s infinitely many n such that p(f(n2)) > 2n.
18. Consider f(x+ 1)− f(x).
19. Think about f(x) = x2 + x+ 1.
20. Apply problem 9.
21. Choose n, a product of N + 1 primes, so P (n) ≡ 0 (mod qi) for N primes qi.
22. This is an application of Kobayashi.
23. Set n = 2 lcm(1, . . . ,x) and consider mod N = lcm(1, . . . , 2x).
24. We can assume f is irred and nonconstant by factoring.
25. This is an application of Zsigmondy.
26. Examine the equation mod p, q for two primes in [1,n].
27. If g is a primitive root mod p, then ge is an nth power iff e ≡ 0 (mod n).

9
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5. Sketches
1. As f(x) = xp−p is irreducible, by anti-Schur there’s some q ∈ P\P{f(n)} which

works.

2. We have (1,m,n) and (a, 1,n). If a and m aren’t 1, by Zsigmondy am + 1 has
a primitive prime divisor, which does not divide a + 1, so am + 1 - (a + 1)n.
Exception is (2, 3,n).

3. By Bertrand some 2n+m is prime; pair up {m, . . . , 2n} and recurse on m− 1.

4. Let f(x) = x2 + x+ 1. Pick p0, . . . , pn ∈ P{f(n)}, which exist by Schur. Solve
f(x) ≡ 0 (mod pi) by CRT.

5. None of them. Suppose there were consecutive numbers; write them as ax3 and
by3 for a and b cubefree. We want ax3 − by3 = 1, which by Thue has finitely
many solutions. Because they’re p-smooth, there’s only finitely many a and b.

6. In fact P (x) = (x+ a)(x+ b) is enough. Let {sn} be the positive integers such
that P (sn) is only divisible by primes smaller than 20. If {sn} is unbounded,
then P{sn + a} and P{sn + b} are both finite, contradicting Kobayashi. Thus
it’s bounded and we’re done.
Remark: Here is an incorrect proof. Suppose that P{P (n)} was finite. By
Kobayashi, if {n+ a} has finitely many prime divisors, then {n+ b} doesn’t,
contradiction. This doesn’t work because it doesn’t guarantee that all sufficiently
large x are divisible by a prime larger than 20.

7. Yes. Define {an}20001 as a1 = 9 and an+1 = pnan where pn is a primitive prime
divisor of 2an + 1, which exists by Zsigmondy. Then n = a2000 works.
Remark: Compare RMM 2014/4: Prove there are infinitely many n such that
n | 2n + 1 but n - 22n+1 + 1.

8. Suppose P{f(n)} = {p1, . . . , pn}. Suppose f(1) =
∏

peii . Take N = f(1)
∏

pi.
Then f(1) | kN | f(kN + 1) − f(1), so f(1) | f(kN + 1). If pei+1

i | f(kN + 1),
then pei+1

i | N , and pei+1
i | f(1), contradiction. Hence f(kN + 1) = f(1). Then

kN + 1− n | f(kN + 1)− f(n) = f(1)− f(n), but the LHS is unbounded and
the RHS is constant, and hence f must be constant too, contradiction.
Remark: Compare External-Link-Alt: Let f ∈ Z[x] be nonconstant with f(0) 6= 0. Show that
P{f(2n)} is infinite.

9. All deg f = 1. If nonlinear, g(x) = f(x+ 1)− f(x) is nonconstant so by Schur
P{g(n)} is infinite. For any q ∈ P{g(n)} we have f(x + 1) ≡ f(x) (mod q) for
some x which means f can’t be surjective mod q.

10. For n odd, pick p | n; then all k = pm for sufficiently large m work. Several
possible constructions for n even, here’s two (sledgehammery) ones:

• Pick large t and prime p with p < 22
t−t(n/2)2

t
< 2p by Bertrand. Then

k = 2tp works by checking mod p.
• Pick p ∈ P

{
nnr−1 − 1

}
r≥1

, which is infinite by Kobayashi or Zsigmondy.
We claim k = nrp works. Indeed, nk ≡ nr (mod k), by checking both mod
nr and mod p.

10
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11. All except 2k − 1. If b = 2k − 1, suppose prime p | n. Then b2n ≡ 1 (mod p) so
ordp(b) | gcd(2n, p− 1) = 2, so p | b2− 1 = (b− 1)(b+1). But as b = 2k − 1, this
forces p | b− 1, and hence 0 ≡ bn + 1 ≡ 2 (mod p), contradiction.
Else, a la IMO 2000/5, define {an} by choosing odd prime a0 | b + 1, and
an+1 = pnan where pn is a primitive odd prime divisor of ban + 1, which exists
by Zsigmondy. Then all an work.

12. By problem 9, we must have degP = 1. Let P (x) = cx + d. If p | c, fix s and
note P (mps) ≡ P (mps + p2s−1) (mod p2s) for all m, contradiction for large s,
hence c = ±1. WLOG c = 1; show that d ≥ −2021 due to size.

13. Motivation: c = 142 857 works often because of the decimal expansions of 1
7 , . . .

6
7

being cyclic shifts of each other. In particular, take some k and prime p such
that p | 10km− n, which exists by Kobayashi. Then the expansions of m

p and n
p

are shifts of each other; take c to be the repeating part of 1
p .

14. Set T = {p1, . . . , pn} ⊆ P and let S = {
∏

T ′ | T ′ ⊆ T ,T ′ 6= ∅}. For some p 6∈ T ,
let g be a primitive root and write pi = gei for ei ∈ {1, . . . , p− 1}. By pigeonhole
two of the partial sums in {e1 + · · ·+ ej}nj=1 are equal modulo n; their difference
gives some ei+ · · ·+ej ≡ 0 (mod n) whence gei+···+ej ∈ S is a perfect nth power.

15. f must split into linear factors of the form 4n− a2. We can assume f is irred
and nonconstant by factoring. By Schur, take some p ∈ P

{
f(n2)

}
, say p | f(m2).

Then one of m mod p or p − (m mod p) is < p/2, so there’s infinitely many n
such that f(n2) has a prime divisor greater than 2n.
If the sequence was bounded above, there’s some k such that p(f(n2))− 2n = k
has infinitely many solutions, implying 2x+ k | f(x2) as polynomials. As f(x2)
is even, we must have 2x− k | f(x2) too. Hence f(x2) = 4x2 − k2 as it’s irred,
and f(x) = 4x− k2.

16. Let k = (P ,Q), which is an integer. For prime p let xp = ordp(2) and yp =
ordp(3). Note that xp | Q(n) iff p | 2Q(n)− 1, and similarly for yp. By Zsigmondy
or Kobayashi, we can pick infinitely many such p; choose one of them.
As xp | Q(n), we have xp | Q(n + axp) for any a ∈ Z. Thus p | 2Q(n+axp) −
1 | 3P (n+axp) − 1, thus yp | P (n + axp), thus yp | P (n + axp + byp) for any
b ∈ Z. As a special case, if xp | Q(n), then yp | P (n), which means that
gcd(xp, yp) | gcd(P (n),Q(n)) | k, and so (xp, yp) ≤ k.
As yp | P (n) and yp | P (n+axp+ byp), we get yp | P (axp+ byp) as well, and thus
p | 3P (axp+byp)−1. By Bezout, we can pick a, b such that axp+ byp = gcd(xp, yp).
But then we get infinitely many primes dividing 3P (gcd(xp,yp)) − 1, contradiction.

17. It’s n ≥ 3. We’ll construct with aij = aiaj . Thus the sequence is determined
by ap for prime p, and we only need to have a1 + 2a2 + · · · + nan = 0. For
large enough n, we can use Bertrand twice to pick primes n/4 < p < n/2 and
n/2 < q < n. We’ll then pick ar = 1 for primes not p or q, and then pick ap and
aq by Bezout. Casework is needed for which of p, 2p, 3p are in range, plus more
casework for small n.

11
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18. Either P (x) = xm or P (x) = c with ω(c) ≤ N + 1. Constant case is clear. Write
P (x) = αxmQ(x) with Q(0) 6= 0. If Q is constant, choosing n as the product of
N + 1 primes shows that Q(x) = 1.
Suppose Q is nonconstant. By Schur, pick q1, . . . , qT ∈ P{Q(n)} for some T � N
such that qi > |Q(0)|, and say qi | Q(ai). By Dirichlet, pick N primes pi ≡ 1
(mod q1 · · · qT ) and by Dirichlet and CRT, pick prime pN+1 ≡ ai (mod qi). Set
n = p1 · · · pN+1. We get P (n) ≡ P (ai) ≡ 0 (mod qi), so ω(P (n)) ≥ T � N ,
contradiction.

19. Fix n. Suppose we have N = pe11 · · · pekk such that ϕ (peii ) | n. Then all nth
powers are 0 or 1 mod peii , so the sum of m of them is m− 1 or m, because the
powers have to be pairwise coprime. By CRT there’s at most 2km such numbers,
so if N > 2km then there’s N − 2km things modulo N that fail, giving infinitely
many. Thus we want to find infinitely many n and N that work.
Fix x. Let n = 2 lcm(1, . . . ,x) and N = lcm(1, . . . , 2x); we now need estimates.
Note 2N/n > xπ(2x)−π(x), counting one for each prime in (x, 2x]. Similarly
n ≤ xπ(x). By PNT, we get, for sufficiently large x,

log

(
2N

2π(2x)n

)
> (π(2x)− π(x)) log x− π(2x) log 2

≥ (1− ε)π(x) log x

≥ (1− ε) log(n),

and rearranging shows N > 2π(2x)n2−ε as desired.

12
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A. Diophantine geometry
One of the big ideas is that classifying by degree is insufficient, and the morally correct
way is to classify based on the genus, which is a geometric property. Say we had some
f ∈ Z[x, y]. The graph defined by f(x, y) = 0 over R2 is the affine curve of f , and
say it has degree d = deg f . We can then homogenize it to get some hf ∈ Zd[x, y, z],
by setting hf(x, y, z) = zdf(x/z, y/z). For example, x4 + y4 − 1 homogenizes to
x4+ y4− z4. The graph defined by hf(x, y, z) = 0 over RP2 is a projective curve. Here,
RP2 is the real projective plane, the set of points (x, y, z) with x+ y + z = 1.2

We check if there are any singularities on hf , which is a point on the projective
curve that is 0 for each partial derivative ∂hf/∂x, ∂hf/∂y, ∂hf/∂z. Our example,
x4 + y4 − z4, has no singularities; we say it is nonsingular. If it did have singularities,
we’d use a procedure to resolve the singularities, such as blowing up. Because it’s
nonsingular, we can compute the genus as g =

(
d−1
2

)
= 3. We count the number of

points at infinity, which are points with z = 0; this gives us the Euler characteristic,
which is χ = 2− 2g − (# of points at infinity) = −4.

The integer solutions to f(x, y) = 0 are classified by χ. If χ > 0 it’s an infinite
set, common in the d = 2 case. If χ = 0 it’s a finitely generated group, as with
elliptic curves. If χ < 0 it’s a finite set, like in our case. This statement includes the
Mordell–Weil, Siegel, and Falting theorems; together with Roth these are four of the
fundamental theorems in Diophantine geometry. I picked this up from a book I didn’t
read: [HS13].

2You can scale by some constant k, because if hf(x, y, z) = 0 then hf(kx, ky, kz) = 0 because hf is
homogeneous. If you’ve seen barycentric coordinates, this should look familiar.
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