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0 Intro
Here was my frustration on type theory. All the material I’ve seen either:

• covered the theory well, but was dense, research-level, and notation-heavy, with
few examples I understood, or

• had plenty of good examples, but was specific to something like Coq or Lean,
and gave only passing mention to the theory.

There was a hole here. I wanted a relatively accessible introduction to type theory,
focusing on the theory behind it, without going through details specific to proof
assistants. Despite that, I wanted to learn more about the theory that was relevant
to proof assistants. I wanted to understand the relationship between types and
propositions, and all the different kinds of types that made up the calculus of inductive
constructions. I wasn’t concerned too much about metatheory, or logics that aren’t
used in formal verification anyway. This is my attempt to fill this hole.

It’s called Type Theory by Example because I believe in the value of having a “poster
example” to have when thinking about a concept. I tried to make the examples as
clear as possible, even if it meant sacrificing the finer details. In fact, we’ll focus on
examples so much that we’ll only very rarely state any actual rules.

The intended pre-requisites:

• You’re familiar with logical notation, enough that you know how to read ∀x :
R,∃y : R,x+ y = 0 and have it make sense.

• You know some classical logic, enough that the statement “if A or B, and not A
implies B, then B” makes sense.

• You know enough set theory to know the definition of a function f : A → B as a
subset of A×B satisfying certain properties.

• You have solid experience reading other people’s proofs and writing your own.

Thanks to Nir Elber and Jason Chen for comments and suggestions. There are
probably typos, small errors, medium errors, and absolutely huge errors. If you spot
anything wrong, please correct me, because I’m literally just an undergrad and I
don’t know anything about anything I’m writing about. You can contact me at
cj@cjquines.com . Feel free to reach me too if you find something unclear or if you
have questions.
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1 Logic
1.1 Inference rules
Symbolic logic is the study of how sets of symbols and rules about them build up
the foundation of mathematics. These rules are built up in levels, depending on how
much restriction you’re putting over things you can quantify—that is, say “for all” (∀)
and “there exists” (∃) on. In higher-order logic, you can quantify over anything. In
first-order logic, you can quantify over single variables, so you can’t quantify over sets
or functions. And in zeroth-order logic, there are no quantifiers at all!

If there aren’t quantifiers in zeroth-order logic, what’s left? There are propositions,
like true (>), false (⊥), and variables for propositions (A,B,C, . . . ). There are
connectives between propositions, like “and” (∧), “or” (∨), “implies” (→), and “not”
(¬). Propositions and connectives form other propositions (e.g. A → ¬B). That’s
it. This is why zeroth-order logic is called propositional calculus. There are many
kinds of propositional calculi, depending on what rules you use.

Propositional calculi are also built up in levels. On the top is classical logic, where
we have all of our nice connectives, each proposition is either true or false, and the law
of excluded middle holds. Removing the law of excluded middle gives us constructive
logic. Removing most of the connectives, leaving only → and ¬, gives us implicational
calculus. And below even that, where we only keep →, we get positive implicational
calculus. We’ll study this first.

The rules in any symbolic logic are called inference rules. Given something that’s
true, and in a certain format, an inference rule tells us something else that’s true. The
essential one, in positive implicational calculus, is this one, modus ponens.

A A → B
B

The way this rule should be read is as “if A is true, and A → B is true, then B is
true.” The things above the bar are called hypotheses, and the thing below is the
conclusion. Here A and B stand for any proposition. We can replace them with other
propositions, like replacing A with A → B and B with B → C.

A → B (A → B) → (B → C)

B → C

We can stack these diagrams to produce longer proofs. These can get rather long, so
we can also label the rule we use to the side. Here MP stands for modus ponens.

B

A → B (A → B) → (B → C)

B → C
MP

C
MP

Positive implicational calculus also gives us two axioms, which are inference rules that
don’t have “requirements”. We’ll call these rules rule K and S, for reasons that will
become clearer later.

A → (B → A)
K

(A → (B → C)) → ((A → B) → (A → C))
S

Please convince yourself that MP,K, and S are true in classical logic as well. Now we
can try to prove facts using just these rules. For example, consider the fact A → A.
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We know, from classical logic, that this is true for any A. Can we prove it using just
these three rules? Our first attempt might proceed by just trying to substitute A for
everything in S. We want to use MP, somehow, to get A → A.

(A → (A → A)) → ((A → A) → (A → A))
S

However, we can’t immediately use this. We can make A → (A → A) by substituting
A for everything in K. Then we can use MP. But we don’t get anything useful:

A → (A → A)
K

(A → (A → A)) → ((A → A) → (A → A))
S (from above)

(A → A) → (A → A)
MP

To get to the conclusion A → A with MP, we somehow need to have produced A → A
already! So instead, we use S, substitute A for A, but substitute A → A for B instead.
We can then use K, by substituting A → A for B. This allows us to use MP. To get
the conclusion, we use K again. This gives us the following proof.

A → ((A → A) → A)
K

(A → ((A → A) → A)) → ((A → (A → A)) → (A → A))
S

(A → (A → A)) → (A → A)
MP

A → (A → A)
K

(A → (A → A)) → (A → A)
(from above)

A → A
MP

There are lots and lots of parentheses. To reduce parentheses, we adopt the convention
that → is right-associative. That is,

A → B → C → D should be interpreted as A → (B → (C → D)).

Note that this allows us to write K and S with less parentheses.

A → B → A
K

(A → B → C) → (A → B) → A → C
S

Why right-associative? The simple, perhaps unsatisfying answer, is that this means
we write less parentheses than we do if we treated → as left-associative. We’ll give a
more satisfying explanation later on when we talk about currying.

1.2 The deduction theorem
These kinds of proofs get complicated. Can you use these three rules to prove the
fact that (A → B) → (B → C) → A → C? This intuitively feels like something that
should be true: we take A → B, and we take B → C, and we should be able to “chain”
them together to get A → C. Translating this to a proof straight from the axioms is
kind of hard, though.

It’d be really nice if, somehow, we had a sort of “metatheorem”. Not a theorem in
the implicational calculus, but a theorem about it, proven above it. If ∆ is a list of
propositions, we’d really like to prove this deduction theorem:

∆ A....
B

=⇒
∆....

A → B
.

4



Type Theory by Example Carl Joshua Quines

Here we’re using
... to represent multiple inferences. To prove this, we’ll be a bit more

specific about what we can do with inferences. One rule we’ve been using implicitly,
without mentioning it, is substitution: if we know A, then we can change a part x to
any y. We’ll call this rule Sub., and abbreviate it as A[x 7→ y].

Another, even more basic rule, is inferring something we already have, which we’ll
call Ref. for reflexivity. We’ll consider these two as inference rules we can always
use, no matter what system we’re using. With modus ponens, this gives us our three
inference rules.

∆ A
A

Ref. A
A[x 7→ y]

Sub. A A → B
B

MP

To prove the deduction theorem, we’ll induct on the number of inferences we’ve made.
The base case is no inferences. Now suppose that the deduction theorem is true for
any sequence of n inferences. Suppose that we started with ∆ and A, and after n+ 1
inferences, end up with B. Then there are three cases for the last inference:

• We used Ref.. If B is A, we need to prove A → B = A → A, which we’ve already
done. Else B is in ∆. Then

∆
B

Ref.
B → (A → B)

K

A → B
MP

.

• We used Sub.. Then B = B′[x → y] for some B′, x, and y. We used at most n
inferences to get B′, so by induction, we can prove A → B′. Then

∆ A....
B′

ind. hyp.
=⇒

∆....
A → B′

(A → B′)[x → y] = A → B
Sub.

• We used MP. Then there exists some P such that the final step looks like

∆ A....
P

∆ A....
P → B
B

MP
.

By induction hypothesis,

∆ A....
P

ind. hyp.
=⇒

∆....
A → P

∆ A....
P → B

ind. hyp.
=⇒

∆....
A → P → B

.

Finally,

∆....
(above)

A → P

∆....
(above)

A → P → B (A → P → B) → (A → P ) → A → B
S

(A → P ) → A → B
MP

A → B
MP

.
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With the deduction theorem, it is now much easier to prove the fact (A → B) →
(B → C) → A → C. The idea is that we want to write A → B, B → C, and A as
hypotheses, use MP to get C, then use the deduction theorem to bring down anything
that’s not a conclusion.

A A → B
B

MP
B → C

C
MP

deduct.
=⇒

A → B B → C....
A → C

deduct.
=⇒

A → B....
(B → C) → A → C

deduct.
=⇒

....
(A → B) → (B → C) → A → C

The great thing about our proof of the deduction theorem is that, if we wanted to, we
can actually construct the inferences we used, by going backwards using the proof.

As an exercise, please prove K and S using MP, the deduction theorem, and Ref. and
Sub.. This means that (MP, deduction theorem) can prove, and be proven with, (MP,
K, S) where again we take Ref. and Sub. as implicit. This means these two systems
are equivalent to each other!

1.3 Constructive negation
With positive implicational calculus behind us, we now proceed upward. The reason it’s
called positive is because there was no negation, or ¬A. To get implicational calculus,
we add the proposition ⊥, or false, to our system. Simply put, ⊥ is a proposition that
can never be proved. If we have ⊥, we have a contradiction.

We now define ¬A to mean A → ⊥. That way, we’re still using → as our only
connective, which is why it’s called implicational calculus.

Here’s an important philosophical point, even though it may sound simple. We
know what it means for A to be true: if we can prove A, it is true. But what does it
mean for A to be false? Take a moment to think about this before reading on.

Consider a proposition A, like “For all odd n, n is prime.” To show A is false, one
way would be to show a counterexample—that is, to bring out 9 and say, look, this
integer is odd. If A was true, then 9 would be prime. We also know that as 9 = 3 · 3
then it is not prime. So we’ve gotten a contradiction, and so we know the A must be
false. This means A → ⊥, or ¬A. In particular, ¬A means “There exists some odd n
such that n is not prime.”

Now, consider a different proposition A, like “For all irrational a and b, ab is
irrational.” To show A is false, we show a counterexample. Consider

√
2
√
2. If A was

true, then it would be irrational. Now consider
(√

2
√
2
)√

2
. It is 2, so it is rational.

Contradiction. So A must be false, and therefore ¬A.
That’s fine. But what is ¬A? Is it “There exists irrational a and b such that ab is

rational”? That was not what we proved. If that was what we proved, then where is
the a and b? What we did prove is “it’s not the case that for every irrational a and b,
then ab is irrational.” That is what ¬A is, nothing more.
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We are getting at the heart of the distinction between constructive logic and
classical logic. In classical logic, every proposition A must be true or false, so ¬A is
just the opposite. In classical logic, a proposition must be true or false, whether or
not we can prove it. But in constructive logic:

• To say A is to prove A.
• To say ¬A is to prove that A gives ⊥.
• To say A is false is to prove that A gives ⊥.
• To say ¬A is false is to prove that ¬A gives ⊥.
• To say ¬A is false is to prove that (proving that A gives ⊥), gives ⊥.
• To say ¬A is false is to prove that there’s no proof that A gives ⊥.
• To say ¬¬A is true is to prove that there’s no proof that A gives ⊥.

In constructive logic, A and ¬¬A mean different things, and it’s not always true that
¬¬A → A! This actually makes sense, given Gödel’s incompleteness theorems, which
say that there will always be some true statements we can’t prove.

This means that, in constructive logic, statements like the law of excluded middle
(A ∨ ¬A) or double negation elimination (¬¬A → A) aren’t true for all A. On the
other hand, even if double negation elimination is false, double negation introduction
(A → ¬¬A) is true. Our constructive logic is positive implicational logic with ¬,
so we can still use the deduction theorem. To prove A → ¬¬A, we need to prove
A → (A → ⊥) → ⊥. But this follows from MP, and deduction twice.

A A → ⊥
⊥

MP
deduct.
=⇒

A....
(A → ⊥) → ⊥

deduct.
=⇒

....
A → (A → ⊥) → ⊥

Even more interesting: ¬¬A → A isn’t always true, but ¬¬¬A → ¬A is! We invite
the reader to think about it a little. You start with

((A → ⊥) → ⊥) → ⊥
A A → ⊥

⊥
MP

then use deduction to bring A → ⊥ down one step. When we use deduction again,
everything that was deduced from A gets removed with it, leaving

((A → ⊥) → ⊥) → ⊥

A....
(A → ⊥) → ⊥

⊥
MP

deduct.
=⇒

((A → ⊥) → ⊥) → ⊥....
A → ⊥

from which another deduction finishes the proof.

1.4 The BHK interpretation
We just discussed what it means to prove that ¬A. But what about other connectives?
What does it mean to prove A ∨B, A ∧B? In fact, let’s go back even further: what
does A → B mean? We now hand it to Simplicio and Salviati.
simplicio: We’ve talked a lot about how to write these symbols down and use rules

to change them. But what do they actually mean?
salviati: I’m not sure I understand what you mean.
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simplicio: I mean, we’ve worked with the symbols only by following rules blindly.
The rules MP, K, and S don’t “mean” anything beyond shuffling symbols around.
We keep saying that → means “implies”, but what does that word mean?

salviati: Ah, you’re wondering about the difference between syntax and semantics.
So far, yes, we’ve only discussed syntax. Now let’s talk about semantics, or what
it means for a formula to be true.1 Let’s speak intuitively. If I asked you to prove
A → B, what would you do?

simplicio: Well, first I’d assume that A is true. Using that, I’d show that B is true.
salviati: Yes. So A → B is a proof that, assuming A is true, proves that B is true.

In particular, if you knew how to prove A → B, and I gave you a proof of A, you
would know how to prove B, right?

simplicio: Yeah, I just chain the proofs together. I write the proof of A. Then I write
the proof of A → B, which ends up proving B.

salviati: Precisely! So A → B is a function.
simplicio: A function?
salviati: Yes, a function. If your proof of A → B was a function f , and I gave you a

proof p of A, then f(p) would be “inserting” the proof of A into f . This results
in a proof of B. Does that make sense?

simplicio: Kinda? It’s weird thinking about proofs as things we can feed into functions.
Or proofs themselves being functions.

salviati: Well, you’ve done some programming before, right? What is a function, in
a computer program? How does a function, say, reverse a list of words?

simplicio: Well, it’s a list of instructions. You write down a list of instructions that
define the function. You tell the function to take the list of words, write down
the last word, then write down the word before that, and so on.

salviati: Yes, exactly! Now think about a proof. A proof is just a list of words. A
function can operate on lists of words, and a function itself is just a list of words.

simplicio: Certainly a function that operates on proofs written on paper would be
rather complicated. But sure, in theory, it’s possible.

salviati: Let’s move on. How would you prove A ∧B?
simplicio: I’d hand you a proof of A, and then hand you a proof of B.
salviati: Exactly. So A ∧B is an ordered pair of proofs (p, q), where p is a proof of

A, and q is a proof of B. What about A ∨B?
simplicio: I’d tell you which of A or B I’m proving, then I prove it. So, is A ∨B an

ordered pair (P , p), where P is either A or B, and p is the proof of that?
salviati: Yes! Now consider ¬(A ∧ ¬A). This expands to (A ∧ (A → ⊥)) → ⊥. How

would you prove this, intuitively?
simplicio: Well, the outermost thing is a →. So I’ll assume that A∧ (A → ⊥) is true,

and I’m trying to prove ⊥. But if I have A∧ (A → ⊥), I know A, and I also know
1Usually, “semantics” in logic refers to formal semantics. This section discusses a basis for proof-

theoretic semantics. Okay, actually I’m not quite sure, but I think this is true?
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A → ⊥. So I can conclude ⊥, done.
salviati: Now, how do we translate this in the perspective we’ve been using, with the

functions and all? Let me start. The outermost thing is a →. You want to give
me a function that takes A ∧ (A → ⊥) and outputs ⊥.

simplicio: Okay. Well, the input to this function is (p, q), where p is a proof of A, and
q is a proof of A → ⊥, right? Then I can—and this is kind of the weird part—I
can write q(p), which gives me a proof of ⊥?

salviati: Yes. So the proof is just the function that takes an ordered pair (p, q) and
returns q(p). Or (p, q) 7→ q(p).

simplicio: Wait a second! This function doesn’t refer to A or ⊥ or any of those at all?
salviati: No, because we don’t have to. Your proof didn’t refer to the “meanings” of

A or A → ⊥ or ⊥. All your proof did was just take A∧¬A, split it, then use MP.
We wouldn’t expect the function proof to be any different. Anyway, let’s do one
more example. How would you prove A → ¬¬A?

simplicio: Well, this is A → ((A → ⊥) → ⊥). So first, we assume A is true, we’re
trying to prove that (A → ⊥) → ⊥. Well, to prove that, let’s assume that A → ⊥
is true too, right?

salviati: Yep! Now we’re assuming both A and A → ⊥.
simplicio: Alright. But since we’re assuming both of those, we know that ⊥ is true,

just like we wanted to prove. Done!
salviati: Okay, now let’s speak of functions. You want to give me a function that

takes A and outputs (A → ⊥) → ⊥.
simplicio: Let’s say the input is p, where p is a proof of A. Then I need to re-

turn. . . another function?
salviati: Yeah, another function. This function will take A → ⊥ and output ⊥.
simplicio: So let’s say this function’s input is q. Then I need to return q(p), right?

So this is the function q 7→ q(p).
salviati: So what’s the whole function?
simplicio: Is it p 7→ (q 7→ q(p))? It’s kind of weird having this “function that returns

a function” thing, but I can see why it works. First the function takes in a proof
of A, then it takes in a proof of A → ⊥, and then it outputs a proof of ⊥.

This is the Brouwer–Heyting–Kolmogorov interpretation: interpreting A → B
as a function, A ∧B as an ordered pair, and A ∨B as another ordered pair. We’ll say
“BHK interpretation” from now on, or even simply “BHK”.

Simplicio gave us a proof of A → ¬¬A. Compare it with the proof given to us by
the deduction theorem. Now what about ¬¬A → A? Its proof would be a function
that takes (A → ⊥) → ⊥ and returns A. But there isn’t a function that does this.
This corresponds to the fact that, in constructive logic, ¬¬A → A isn’t always true.
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1.5 Lambda calculus
Before we finally begin our dive into types, we need to talk about the nature of
functions. Already in our previous discussion we had to talk about functions that
return functions, which is a weird concept to wrap your head around at first. So let’s
talk about the lambda calculus, which might help.

You might be used to writing functions as f(x) = x2, which is read as “the function
that takes x, and returns x2”. In lambda calculus, we’ll often not give functions names,
and instead write x 7→ x2. That arrow, 7→, is read as “maps to” or “goes to”. And
just like we write f(3) = 9 to apply the function to 3, we write (x 7→ x2)(3) = 9. If we
really wanted to name our functions, we can write f = x 7→ x2.

Function creation is called abstraction. The reason it’s called that is that a function
“abstracts” a computation. Consider 32, (−1)2, and π2. These are all squaring some
number. We can abstract the number into a function, like x 7→ x2.

In lambda calculus, we usually use the letter λ to write these functions. So instead
of x 7→ x2, we’d have written λx.x2. I personally dislike this notation and we won’t
use it in these notes, but most treatments of lambda calculus will use λ.

Functions themselves can take functions as input. Consider the function f 7→ f(f(5)).
This takes in a function and applies it to 5, twice. So

(f 7→ f(f(5)))(x 7→ x2) = (x 7→ x2)((x 7→ x2)(5)) = (x 7→ x2)(52) = (52)2 = 625.

Note how we computed this. When we compute an application of a function, like
f 7→ f(f(5)) on x 7→ x2, we take the bound variable f , then change all the fs in the
expression with whatever our input is, x 7→ x2. This is known as beta reduction.2
We then applied beta reduction again, changing the bound variable x to the input 5.
Then we apply beta reduction one more time.

We’re already getting lots of parentheses, so when it’s clear, we will omit parentheses
in application. Instead of writing f(x) to apply f to x, we will just write fx.

Functions themselves can also return functions. Consider the functions y 7→ 3 + y,
or y 7→ −1+ y, or y 7→ π+ y. These are all the same computation! So we can abstract
the number into a function, giving us x 7→ (y 7→ x + y). The way we’d apply this
would look like

(x 7→ (y 7→ x+ y))(3)(5) = (y 7→ 3 + y)(5) = 3 + 5 = 8.

Some functions take multiple inputs. For example, you might think of the addition
function as f(x, y) = x+ y. While we can write this as (x, y) 7→ x+ y, when we do
lambda calculus, we prefer all of our functions to have only one input. To do functions
with multiple inputs, we give our inputs one at a time. So we’d write the addition
function as x 7→ (y 7→ x+ y). Hey, doesn’t that look familiar?

When we turn a function with multiple inputs to several functions that take one
input at a time, that’s called currying. It’s because of currying that we make 7→
right-associative. This means that

x 7→ y 7→ z 7→ w should be interpreted as x 7→ (y 7→ (z 7→ w)),

because this is the curried version of (x, y, z) 7→ w. When you see a chain of 7→s, we
can think about it as “a function that returns a function”, but we can also think of it

2There’s also alpha conversion, and eta expansion. In the calculus of constructions, there’s also iota
reduction, delta reduction, and zeta reduction. We won’t talk about those.
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as “a function with multiple inputs”. The BHK interpretation turns → to 7→, which is
why they’re both right-associative.

It’s also because of currying that we make function application left-associative.
This means that

fghx should be interpreted as ((fg)h)x.

Putting it together, we’d say

(a 7→ b 7→ ab)(f 7→ f5)(x 7→ x+ 3) = (b 7→ (f 7→ f5)b)(x 7→ x+ 3)

= (b 7→ b5)(x 7→ x+ 3)

= (x 7→ x+ 3)5,

which is 5 + 3 = 8.

1.6 Curry–Howard, part 1
Now we draw our first big connection. You may have noticed the way we proved
A → ¬¬A with the deduction theorem, and the BHK interpretation as p 7→ q 7→ qp,
are related. We can make this precise. Here, we repeat the deduction proof, but we
annotate each proposition with its BHK interpretation.

p

A
q

A → ⊥
qp

⊥
MP

deduct.
=⇒

p

A....
q 7→ qp

(A → ⊥) → ⊥

deduct.
=⇒

....
p 7→ q 7→ qp

A → (A → ⊥) → ⊥

Please convince yourself that MP is application and deduction is abstraction.
This is an important correspondence known as the Curry–Howard correspondence,
and this won’t be the first time we’ll encounter it. It’s important enough that it gets
its own section, even if it’s a short one.

As an exercise, consider our proof of ¬¬¬A → ¬A, and write it out in BHK. The
easiest way is to work from the deduction-style proof we wrote earlier. You should’ve
gotten an answer like p 7→ q 7→ p(r 7→ rq); check that it also matches what we’d expect
from the BHK interpretation.

11
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2 Types
2.1 Curry–Howard, part 2
So far in the Curry–Howard correspondence, we’ve shown a relationship between
deduction-style proofs and lambda calculus. In particular, given a deduction-style
proof, we can come up with a corresponding proof in the BHK interpretation, that
happens to be a function. But for this to be a correspondence, we want to be able
to go the other way around as well! Given a function in the lambda calculus, does it
represent a proof of some logical fact?

We can do this for some kinds of functions. Let’s consider the example p 7→ q 7→ qp.
The qp at the end, an application, must be a result of MP. Hence, if p is a proposition
A, then q must be A → B, for some B. By reversing the abstractions, the theorem
must have been A → (A → B) → B. Note that this is more general than the statement
we originally used p 7→ q 7→ qp to prove, which was A → ¬¬A, or A → (A → ⊥) → ⊥.

On the other hand, we can’t do this for all possible functions. Consider a function
like x 7→ xx. Again, we know from MP that if x was some proposition A, then x must
be A → B, for some B. But this is impossible! So if the correspondence isn’t between
deduction-style proofs and lambda calculus, what is it a correspondence between?
This is solved by introducing types.

2.2 Inference and inhabitation
The main concept of type theory is that all mathematical objects, or terms, have a
type. For example, we can say that π has type real, indicating that it’s a real number.
We write this as π : real, where the : is read as “has the type”.

As another example, 3 : int, where int is the type of integers. Two terms of different
types have to be different, so 3 : real is a different 3 than 3 : int. Functions are
also terms, and have types determined by their input and output. For example,
x 7→ bxc : real → int. Again, terms with different types are different; the previous
function is different from x 7→ bxc : real → real.

Functions restrict the types of their inputs. This seemingly simple fact about
functions is very, very important! We cannot call a function on inputs that are of
different type than it accepts. By adding types to lambda calculus, we get what is
known as the simply typed lambda calculus.

As we’ve seen in (untyped) lambda calculus, functions can also take functions as
input. We can also assign types to these functions, like f 7→ ff5 : (int → int) → int.
Also, functions can return functions, so

x 7→ y 7→ x+ y : int → int → int

is a possible function. Once again, → is right-associative, so int → int → int should be
interpreted as int → (int → int).

This allows us to do type inference, to determine what the type of a function
term is, even if we’re not told directly what it is. If we know fπ = 3, we can infer
f : real → int. Even if all we’re given is fα : B, for some α : A, we can tell that f
must have type A → B. Note that it’s possible that A and B are the same type, but
the most general possible type would be A → B.

Now, let’s go back to p 7→ q 7→ qp. What is the most general possible type of this
function? We start inside. From qp, we know if p : A and qp : B, then q must have

12
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the type A → B. This means the type is

(type of p) → (type of q) → (type of qp), or A → (A → B) → B.

Looks familiar? As an exercise, use a similar to procedure to find the type of p 7→ q 7→
p(r 7→ rq). You’d start with something like, “From rq, we know if q : A, and rq : B,
then r must have type A → B. . . .”

There are reasons why the simply typed lambda calculus is, in some ways, nicer
than lambda calculus. In lambda calculus, there are certain kinds of functions that
aren’t well-behaved. Consider ω = x 7→ xx. What happens when we try to evaluate
ωω? We get an infinite loop: by calling ω with ω, the result is still ωω. In some deep
sense, this comes from the fact that we can’t assign a valid type to ω. What happens
when we try to infer its type? From xx, we see x is a function that takes in the type
of x. Please convince yourself that this is impossible.

In a sense, the simply typed lambda calculus is what you get when you ask, how
can we enforce every function to be the result of a BHK interpretation? The rule you
get for application—the fact that function inputs must match types—is precisely what
MP corresponds to. There is also a rule for abstraction, which prevents silly functions
like x 7→ y, because y isn’t defined.

Type inference is the problem of figuring out a type based on the term. The opposite
problem—figuring out whether a term of a certain type exists—is type inhabitation.
If there is a term of a given type, we say the type is inhabited. Generally, type
inhabitation is harder than inference, but we can still do it in some cases.

In particular, the previous section showed that if we have a deduction-style proof,
we can convert it to a term. This means that facts like K and S, can be converted.
Please check that

K = p 7→ q 7→ p and S = p 7→ q 7→ r 7→ pr(qr)

are functions that have the appropriate types.3 On the other hand, if you try to find a
term that has the type ((A → B) → A) → A, you’ll see that you can’t.

2.3 Curry–Howard, part 3

simplicio: Well, big deal. Theorems in zeroth-order implicational logic correspond
to functions in simply typed lambda calculus, and vice versa. Is that all the
Curry–Howard correspondence is about?

salviati: Remember how we showed that MP, K, and S were enough to show the
deduction theorem? That means that all inhabited types in simply typed lambda
calculus can be written in Ks and Ss. For example, SKK : A → A.

simplicio: That’s cool and all. But again, I’m left wondering: what does this actually
mean? Once again, we’ve only established a connection between syntax. We
haven’t talked at all about what this correspondence means for semantics.

salviati: Alright. What does it mean to say π : real?
simplicio: It means that π is a term that is real.

3This is why these are named K and S, by the way! I think Schönfinkel named it K for the German
for “constant”, because it returns a constant function—no matter what q is, it always returns p.
And the reason it’s named S is from the German for “fuse”.
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salviati: Right. Now, in p 7→ q 7→ qp, we saw that p : A. But what is A, other than
just being some type? What does it represent, according to Curry–Howard?

simplicio: It represents the proposition A. In particular, it represents the proof of
the proposition A. Wait. So that means that p, this term itself, is the proof of A?

salviati: That’s right. Propositions are types. A term of a certain type is a proof
that the proposition is true. We can read : not only as “has the type” but “is
a proof of”. In particular, a proposition can be proven if and only if its type is
inhabited.

simplicio: I guess this kinda makes sense, at least with the BHK interpretation. So
one way to read q : A → B is a function that takes a term with type A and returns
a term with type B. Another way is a proof that A implies B. So that’s why we
use → for both the function type and for “implies”! But how do you interpret a
statement like π : real?

salviati: That means π is a proof of real—that there is a real number. The term is a
witness that there is a term of type real. Showing me a term with a certain type
is the same as showing that the corresponding proposition is true. This is why, to
prove A → ¬¬A, it is enough to show me a function that has the type A → ¬¬A.

simplicio: Okay, sure. Well, what if I just say that R is the type of the statement
of the Riemann hypothesis. And I say, oh look, here’s r : R. Have I proven the
Riemann hypothesis?

salviati: Well, what is r? Are you building it up from other terms, or are you just
creating it out of thin air? To create a type out of thin air is the same as making
it an axiom. You have to start with something, right?

simplicio: Alright. We’ve discussed how to interpret a single type, and why “implies”
corresponds to the type of functions. What about something like ⊥?

salviati: We define the type ⊥ as a type that has no terms.
simplicio: If this is really ⊥, then there should be a proof that ⊥ → A, for any

proposition A. What’s the corresponding function, then?
salviati: Well, we want ⊥ → A to be a function that, for every term of type ⊥, gives

us a term of type A. The empty function works, because there are no terms of
type ⊥. So, vacuously, it can have any output type we want, like A.

simplicio: Sure. But how do ∧ and ∨ correspond to types?
salviati: Well, in this case, you can go from the BHK interpretation to create a type.

We talked about how the proof of A∧B should be an ordered pair of proofs, (p, q),
where p : A and q : B. Using Curry–Howard to translate, the corresponding type
should consist of the ordered pairs of terms (p, q), where p : A and q : B.

simplicio: Oh, but there’s a name for that! It’s A×B, right? At least when A and
B are sets, the set A×B is the set of ordered pairs of elements.

salviati: Yeah, and we use the same notation in type theory. We call it the product
type A×B. This is in analogy to the product of sets. Note that, when A and B
are finite sets, the size of A×B is the product of the sizes of A and B. That’s
where the name “product” comes from.
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simplicio: That makes sense. Except in this case, A and B are types, not sets. But
what about ∨? It’s either something like (A, p) where p : A or (B, q) where q : B.
These are ordered pairs, but there’s no nice way to write this as a product.

salviati: No. In this case we call it the sum type A+B, and just define it like that.
Again, it’s named “sum” in analogy to set theory, because when A and B are
finite sets, the size of A+B is the sum of the sizes of A and B. This operation is
better known as disjoint union.

simplicio: So to recap: propositions are types, → is →, ⊥ is the empty type, ∧ is ×,
and ∨ is +? That settles everything we’ve discussed with the BHK interpretation.
But that’s still not all of logic! What about ∀ and ∃?

2.4 First-order logic
So far, we’ve only discussed zeroth-order logic. Now that we’ll start discussing ∀ and
∃, we need to move to first-order logic.

In first-order logic, we can use ∀ and ∃, which are known as quantifiers. But we can
only quantify over variables. In particular, we can’t quantify over propositions. To
make the distinction, we’ll use x, y, z, . . . for variables and A,B,C, . . . for propositions.
So ∀x is allowed, in first-order logic, but ∀A is not.

This is an important distinction, which we’ll keep in mind as we go on. But
it’s also quite subtle, and I had a hard time wrapping my head around it at first.
It’s true that we didn’t pay too much attention to this. We proved things like
(A → B) → (B → C) → A → C without thinking too hard about what A, B, and C
are. Strictly speaking, we didn’t prove “For all propositions A, B, and C, . . . .” That
is a fact of second-order logic. Instead, what we showed, was that for these specific A,
B and C, this fact was true.

And yes, it’s true that we can prove this for any possible combination of A, B, and
C, simply by following the same steps. But the language of zeroth-order logic doesn’t
let us say anything about all A, B, and C. To do that, we’ll have to build up more
tools. To go to second-order logic, we first need to talk about first-order logic.

What is a variable? Well, imagine a proposition like “2 · 1 is even.” Now imagine
another proposition, like “2 · 21 is even.” And imagine “2 · 3 is even.” These are all
(zeroth-order) propositions of the same form: “2x is even”, where x is some integer. If
we want to say something about all integers in general, we can say “For all integers x,
2x is even.” Let even(y) be “y is even”. A proposition like even(y), with a variable like
y in it, is called a predicate. Our statement can now be written as ∀x : Z, even(2x).

What’s the BHK interpretation? Well, how would you prove ∀x : S,Ax? You
need to produce a proof of Ax, no matter what x in S that I give you. This means
∀x : S,Ax needs to be a function: it converts elements x of S to a proof of Ax. In
particular, ∀x : Z, even(2x) needs to be a function that converts an integer x to a proof
that 2x is even. Now consider

(∀x : S,Ax → Bx) → (∀x : S,Ax) → (∀x : S,Bx).

How do we prove this?4 Again, the proof will be a function, so let’s name the inputs.
Suppose that p is ∀x : S,Ax → Bx and q is ∀x : S,Ax. We need to show that

4We’ll use the standard convention that ∀ and ∃ stretch out as far as they can. So ∀x : S,Ax → Bx
should be interpreted as ∀x : S, (Ax → Bx), which is different from (∀x : S,Ax) → Bx.
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∀x : S,Bx. This itself should be a function, so let’s name its input x. So far, we
have p 7→ q 7→ x 7→. Now we need to get Bx. Well, we get that qx is Ax. Also, px is
Ax → Bx, so px(qx) is Bx. Our proof is p 7→ q 7→ x 7→ px(qx). Looks familiar?

Similarly, how do we prove ∃x : S,Ax? To show that something exists, you have to
give me the thing you say exists. A proof of ∃x : S,Ax should be an ordered pair of x,
and a proof of Ax.

Let’s say that prime(n) is the predicate “n is prime”, and factor(a, b) is the predicate
“a is a factor of b”. You can write statements like ∃n : N, prime(n) ∧ factor(n, 57), and
a proof of this could be (3, (p, q)), where p is a proof of prime(3) and q is a proof of
factor(3, 57). We can even write things like ∀n : N, ∃p : N, prime(p) ∧ factor(p,n), the
statement that every natural number has a prime factor.

As an example, consider (∃x,A ∧Bx) → (A ∧ ∃x,Bx). How do we prove this? The
proof is a function. Its input would be something like (x, (p, q)), where p is a proof
of A and q is a proof of Bx. What we want to return is this shuffled around. Please
check that (x, (p, q)) 7→ (p, (x, q)) makes sense as a proof of this fact.

We can prove relationships between these two. For example, how would we prove
(∃x : S,¬Ax) → (¬∀x : S,Ax)? This is a pretty complicated example, so please think
about it first. It might help to interpret this intuitively.

So, the proof is a function. If we expand all the ¬s, we get

(∃x : S,Ax → ⊥) → (∀x : S,Ax) → ⊥.

This function has two inputs. The first is an ordered pair, so we’ll name it (x, p),
where p is the proof of Ax → ⊥. The second input is ∀x : S,Ax, a function, which
we’ll name q. We need to get ⊥. Indeed, we see that qx is Ax, and thus p(qx) is ⊥.
So this function is (x, p) 7→ q 7→ p(qx).

Interestingly, while it is true that (∃x : S,¬Ax) → (¬∀x : S,Ax), it is not true, at
least in the BHK interpretation, that (¬∀x : S,Ax) → (∃x : S,¬Ax). This is another
one of those things where classical logic is different from constructive logic. On the
other hand, it is true that ¬∃x : S,Ax is equivalent to ∀x : S,¬Ax; can you prove it?

In summary, in the BHK interpretation, ∀x : S,Ax is a function that takes a variable
x and returns a proof of Ax, and ∃x : S,Ax is an ordered pair of a variable x and a
proof of Ax.

2.5 Dependent types
Let’s go back to Simplicio. What do ∀ and ∃ correspond to in type theory? Let’s do
what Salviati did, and use Curry–Howard to find the corresponding type.

We know that ∀x : S,Ax should be a function. It takes in the variable x to produce
a proof of Ax. Now we have to be very careful here. Ax is a proposition, so it must be
a type. But x is a variable, not a proposition! So it shouldn’t be a type. The natural
way to interpret this is to make x a term of type S.

We get that ∀x : S,Ax is a function that takes the term x : S and converts it to
p : Ax. What is the type of this function? We could try S → Ax. But this isn’t
well-defined, because while we know what S and A are, we don’t know what x is. We
could try to write its type as x → Ax. Now the information from x is contained in the
type. But this isn’t right either, because x is the input, not the type of the input.

So this is a different kind of function, one we can’t write using our current notation.
In this case, we say this function has a dependent type—its type depends on a certain
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term. This specific case, where it depends on the function input, is a dependent
function type. The notation we’ll use for it is the same as the logical notation, so
we’ll write the type of such a function as ∀x : S,Ax.

I know this sounds pretty abstract, so let’s think about an example. Let’s define a
type of integer tuples, which we’ll call inttup(n). The type will include the length of the
tuple, which is n. Now we can make a function like n 7→ (0, . . . , 0), where there are n
zeroes. This takes a natural number n : nat and returns the tuple (0, . . . , 0) : inttup(n).
It wouldn’t be enough information to tell us that the function has type nat → inttup(n).
What’s the n in inttup(n)? This is why we write

n 7→ (0, . . . , 0) : ∀n : nat, inttup(n).

Here’s another example. Let’s say there’s a type even(n). Propositions are types, so
we won’t differentiate between even(n), the proposition that n is even, and the type
even(n). The type means that, if p : even(n), then p is a proof that n is even.

Now the type ∀n : int, even(2n) would be the type of functions that convert an
integer n : int to a proof p : even(2n). We can’t write down such a function yet, since
we haven’t defined even(n), but we will eventually.

In particular, this means that predicates like even(n) correspond to a dependent
type. So what does a dependent type like inttup(n) correspond to? Just like how the
type real is the proposition “there exists a real number”, the type inttup(n) is the
proposition “there exists a tuple of integers with length n.” So predicates correspond
to dependent types.

Note the general function type A → B is just a special case of the dependent function
type ∀x : A,B, when the output type B does not depend on x. For example, you can
consider the function x 7→ bxc : real → int. Please convince yourself that the type of
this function can also be ∀x : real, int. The type of int just doesn’t depend on the value
of x. Because of this:

A → B is an abbreviation for ∀x : A,B.

What about ∃x : S,Ax? It’s an ordered pair of the variable x, and a proof of
Ax. Again, we can try writing its type as S × Ax, but Ax depends on what x is.
Neither does x × Ax work, because x is a term, and not a type. In this case, this
is a dependent product type, where the type of the second element depends on
the value of the first element.5 We again use the notation ∃x : S,Ax for this kind of
ordered pair.

As an example, the type ∃n : int, even(n) is the type of ordered pairs where the first
element is n : int, and the second element is p : even(n), a proof that n is even. Again,
the dependent product type is a generalization of the normal product type. Please
convince yourself that the definition

A×B is an abbreviation for ∃x : A,B

makes sense.

5Some sources will write Πx : S,Ax for what we call the dependent function type, and call that the
dependent product type. Then they’ll write Σx : S,Ax for what we call the dependent product
type, and call that the dependent sum type. I don’t like this terminology. Our choice makes it so
that function and product types are special cases of their dependent versions.
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2.6 Polymorphism
We’ve been pretty careful about specifying we were only quantifying over variables,
and not propositions. When we move up to second-order logic, we can now quantify
over propositions. And this means all propositions; a proposition can quantify itself!

We’ll use the same notation as previously, except we will write Prop to refer to the
type of propositions. So for example, we can write ∀A : Prop,A → A. This is the
statement “for all propositions A, A implies A.” Again, all propositions.

Let’s try to apply the BHK interpretation to ∀A : Prop,A → A. We want a function
that takes in a proposition A, and then returns a proof of A → A. Well, such a
function could be A 7→ x 7→ x. It takes in a proposition A—the proposition itself, and
not a proof of it—then takes in a proof of A, and then returns the same proof.

By Curry–Howard, this should correspond to some type, but what? We can try to
write it as A → A → A. But that doesn’t work, because the first input is A itself, not
a term of type A. We know from Curry–Howard that propositions are types, so A is
a general type. That means that this function takes in a type as input, which isn’t
something we’ve seen before.6

To write its type, we need to refer to the type of types. As propositions are types,
we call this type Prop. Now, is the type Prop → A → A? That doesn’t work either,
because we don’t know what A is. Again, the solution is to use a dependent type:

A 7→ x 7→ x : ∀A : Prop,A → A.

So, what’s the difference? Our dependent types only used to quantify over a single
type, like ∀x : S,Ax. This allowed us to write functions where the output type
depends on an input term. But now we can quantify over types themselves, like
∀A : Prop,A → A. This makes functions have output type depending on an input type.
Again, note the difference we’re drawing between variables, which correspond to terms,
and propositions, which correspond to types.

A function that takes a type as input is polymorphic. This turns out to be a very
natural concept for functions. You can consider, say, the identity function, x 7→ x.
Without polymorphism, you’d need to have an identity that’s int → int, and another
identity that’s real → real, and another identity that’s nat → nat, and so on. But now,
we can just use the polymorphic function A 7→ x 7→ x, with type ∀A : Prop,A → A. If
we want an identity function for ints, we just plug it in: (A 7→ x 7→ x)(int) would be
x 7→ x : int → int.

Note that quantifying over propositions corresponds to polymorphic func-
tions. We saw the example ∀A : Prop,A → A, which is both “for all propositions A,
A implies A”, and the type of the polymorphic function A 7→ x 7→ x. We can go back
to the functions K and S, and see them as they truly are. They are both propositions
that quantify over propositions, and polymorphic functions:

K = A 7→ B 7→ p 7→ q 7→ p

: ∀A : Prop, ∀B : Prop,A → B → A,

S = A 7→ B 7→ C 7→ p 7→ q 7→ r 7→ pr(qr)

: ∀A : Prop, ∀B : Prop, ∀C : Prop, (A → B → C) → (A → B) → A → C.

6In most sources, this would be written as ΛA.λx.x, with the Λ indicating that A is a type, and not
a term. We instead use the type of the function, in this case ∀A : Prop,A → A, to differentiate
which inputs are types and terms.
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3 The calculus of inductive constructions
3.1 Type constructors
Let’s take a step back and think about what we’ve done so far.

• We began with the simply typed lambda calculus, with things like x 7→ bxc :
real → int. Functions take a term (x) and return a term (bxc). These correspond
to implication.

• We then added dependent types, with things like n 7→ (0, . . . , 0) : ∀n : nat, inttup(n).
Dependent types take a term (n) and return a type (inttup(n)). These correspond
to predicates.

• We then added polymorphism, with things like A 7→ x 7→ x : ∀A : Prop,A → A.
Polymorphic functions take a type (A) and return a term (x 7→ x). These
correspond to quantifying propositions.

If we think about this table, we’ve filled in three out of the four entries:

(row) → (column) terms types
terms (normal) functions dependent types
types polymorphic functions ?

The last piece we need are functions that go from types to types. We’ll start by
giving an example of why such a thing would be useful, then we’ll try to recover what
they mean logically. Note that this is the opposite of what we’ve been doing so far;
usually we start with the logic and find the type theory equivalent. But Curry–Howard
means we can do both directions, so we’ll try doing the other direction this time.

We have dependent types, which are types that depend on terms, like inttup(n), the
type of tuples of integers of length n. We can imagine a different approach to this
type, like triple(A). Here A is a type, and triple(A) is the type of triples of terms of
type A. For example, this would mean that inttup(3) and triple(int) are both triplets
of integers. We can imagine a function like A 7→ x 7→ (x,x,x), which takes in a type
A, a term x : A, and then returns a triplet of xs. Please check that this makes sense:

A 7→ x 7→ (x,x,x) : ∀A : Prop,A → triple(A).

A type that depends on another type is a type constructor. The name comes from
the fact that it constructs a new type out of an old one, like triple(int) from int. Note
the difference with a dependent type: a dependent type makes a new type out of a
term, but a type constructor makes a new type out of a type. Two other examples of
type constructors include the product and sum types: both of them take two types
and return a new type. In fact, → itself is a type constructor!

Now, what would this correspond to logically? Let’s compare type constructors
to dependent types. Dependent types take terms and return types. By Curry–
Howard, terms correspond to variables, and types correspond to propositions. That
means dependent types correspond to something that takes a variable and returns a
proposition. But this is precisely what a predicate is!

By analogy, a type constructor should be something that takes a proposition and
returns another proposition. We want some kind of predicate over other propositions.
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This requires us going up another step of logic, because so far we’ve only seen
predicates over variables. For example, we could come up with a predicate like
excludedmiddle(A), which means “A ∨ ¬A.” Then we could make statements like
∀A : Prop, excludedmiddle(A), which is the law of excluded middle.

So we can think of predicates over propositions. I don’t think there’s a good name
for these in the literature. Let’s call these higher-order predicates, to differentiate
them from predicates over variables. By adding higher-order predicates into our logic,
we get what we call higher-order logic.7

3.2 The lambda cube
The three things we added—dependent types, polymorphism, and type constructors—
can be combined in different sorts of ways to produce different sorts of systems. The
three things are, in fact, fully independent of each other, leading to 23 = 8 different
possible systems. These systems are presented in a cube like this.

λω λC

λ2 λP2

λω λPω

λ → λP

In the lower left corner, λ →, is the simply typed lambda calculus. By going from left
to right, we add dependent types. By going from bottom to top, we add polymorphism.
By going from bottom-left to top-right, we add type operators. Each of the individual
systems has a name, but that doesn’t particularly matter for us—what matters more
is the fact that these three things are independent, and can be combined.

For example, we can conceive of combining type constructors and dependent types,
to produce a type that depends on both another type and a term. Let’s say A : Prop.
Then we can consider the type of tuples with n terms of type A, which we’ll call
tup(A,n). Note that, as types, tup(int,n) is the same type as inttup(n) from earlier.
Now you can define a function like A 7→ n 7→ x 7→ (x, . . . ,x), which takes in A, n : nat,
and then a term x : A returning a tuple of n xs. This function would have type
∀A : Prop, ∀n : nat,A → tup(A,n).

We can also conceive of combining type constructors and polymorphism. For
example, we can define the function

and = A 7→ B 7→ (∀C : Prop, (A → B → C) → C) : Prop → Prop → Prop.

This is both a type constructor, because it takes two types and returns a type, as well
as a polymorphic function, because it is a function that takes a type as input.8 To

7As to why it’s called higher-order, I asked a math.SE question about this.
8Notably, and isn’t just an abbreviation that we’re writing. It’s an actual function we’re declaring

within the system, because we have type constructors! Without type constructors, and would just
have to be an abbreviation that we’re making “above” the actual system we’re working in.
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convince you why this can be called and, consider this function:

A 7→ B 7→ X 7→ XA(KAB) : ∀A : Prop, ∀B : Prop, and(A,B) → A.

Here, K is the function we defined earlier. We claim this function has type ∀A :
Prop, ∀B : Prop, and(A,B) → A. First, note that X begins with type and(A,B), and
so the type of X is ∀C : Prop, (A → B → C) → C. By finding XA, we get the type
(A → B → A) → A. Finally, note that KAB is a function with type A → B → A,
so we can indeed feed it as input to XA, giving a result of type A. This shows
that it indeed has that type. By Curry–Howard, this means this is also a proof that
∀A : Prop, ∀B : Prop, and(A,B) → A.

Another example. We can combine dependent types and polymorphism to prove
a statement about relations. For example, a < b is a relation on the reals, and a | b
is a relation on the integers. Generally, a relation on a type A is a predicate R(a, b).
So R is a dependent type, of type ∀A : Prop,A → A → Prop. Then we can write the
following proposition:

∀A : Prop,∀R : A → A → Prop,

(∀x : A, ∀y : A,Rxy → Ryx → ⊥) → (∀x : A,Rxx → ⊥).

This proposition claims that an antisymmetric relation is also antireflexive. The proof
needs to be a polymorphic function of this type. We can start out by writing the
inputs, A 7→ R 7→ p 7→ x 7→ q 7→. Here, p : ∀x : A,∀y : A,Rxy → Ryx → ⊥, and
q : Rxx. Please check that pxxqq gives something of type ⊥, so a function with this
type is A 7→ R 7→ p 7→ x 7→ q 7→ pxxqq.

By combining type constructors, we can write predicates on relations. A relation
itself is something of type ∀A : Prop,A → A → Prop. So a predicate on a relation is
of type ∀A : Prop, (A → A → Prop) → Prop. So we can write things like:

relpred = ∀A : Prop, (A → A → Prop) → Prop

reflexive = A 7→ R 7→ ∀x : A,Rxx : relpred

symmetric = A 7→ R 7→ ∀x : A, ∀y : A,Rxy → Ryx : relpred

transitive = A 7→ R 7→ ∀x : A, ∀y : A,∀z : A,Rxy → Ryz → Rxz : relpred.

Even with all this notation, writing out propositions tend to get pretty long. As an
exercise, please write out a proof for

∀A : Prop,∀R : A → A → Prop,

symmetric(A,R) → transitive(A,R) → (∀x : A, ∃y : A,Rxy) → reflexive(A,R),

the proposition that a symmetric, transitive, and total relation is also reflexive.

3.3 Pure type systems
The calculus of constructions is λC, the system at the opposite corner of the cube
from λ →. This is the system we get when we add dependent types, polymorphism,
and type constructors, all together with simply typed lambda calculus.

Now, the way we built up to the calculus of constructions was pretty ad hoc. We
started with simply typed lambda calculus, and then added a bunch of random things.
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But there is a connection between all the things we introduced! They all introduced
some sort of function going from terms or types to terms or types. By thinking in the
level of pure type systems, we can make this connection clear.

Please think about the relationship between 7→ and →. For example, let’s go back to
the function x 7→ bxc : real → int. The description “x 7→ bxc” describes the function in
the level of terms: the function takes the term x to the term bxc. On the other hand,
“real → int” goes one step higher, and describes the function in the level of types: the
function takes (something in real) to (something in int).

Similarly, consider a type constructor like triple, which we’ll write as A 7→ (A,A,A) :
Prop → Prop. Again, “A 7→ (A,A,A)” describes the function in the level of types: the
function takes the type A to the type of triplets (A,A,A). Then “Prop → Prop” goes
one step higher, and describes the function in a level above types: the function takes
(something in Prop) to (something in Prop).

By going from 7→ to →, we go “one level higher”. The big idea of pure type
systems is by going another level higher, from → to  .9 To specify a pure type
system, we list down the things we can  on.

For example, in simply typed lambda calculus, we have Prop. The only thing we
can  on is Prop Prop. As real : Prop and int : Prop, we can make real → int, from
the rule Prop Prop. The rule also means that real → int : Prop. Because real → int
exists, we can make things of type real → int, by taking, for example, x : real and
bxc : int and saying x 7→ bxc : real → int.

More formally:

• A pure type system has a list of sorts A,B, etc. We specify relationships between
the sorts, like A : B. We also list down several rules, like A B.

• If A B is a rule, A : A, and B : B, we can form the type ∀a : A,B. This itself
has type B.

• If ∀a : A,B is a type, a : A, and b : B, we can form the function a 7→ b. This
has type ∀a : A,B.

Note the second rule here! This implies that, say, Type → Prop : Prop, while
Prop → Type : Type.

With the language of pure type systems, we can now specify the calculus of con-
structions succinctly, instead of as a hodgepodge of three separate systems on top of
simply typed lambda calculus:

• There are two sorts, Prop and Type.
• The only relationship is Prop : Type.
• The rules are Prop Prop, Prop Type, Type Prop, and Type Type.

Here’s an example usage of these rules:

• As Prop Prop is a rule, A : Prop and A : Prop, we can form the type ∀x : A,A.
We can abbreviate this as A → A. This itself has the type Prop, so A → A : Prop.

• As Type Prop is a rule, Prop : Type and A → A : Prop, we can form the type
∀A : Prop,A → A.

9I am inventing notation here. As we’ve already discussed, in most sources, instead of 7→ and →,
they use λ and ∀ (or Π). And in literally every other source, instead of  , they use sets of triplets
of sorts. But I think that obscures this relationship.
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• As A → A is a type, x : A, and x : A, we can form the function x 7→ x. This has
type A → A.

• As ∀A : Prop,A → A is a type, A : Prop, and x 7→ x : A → A, we can form the
function A 7→ x 7→ x. This has the type ∀A : Prop,A → A.

Here’s another example, showing relpred can be formed from the rules:

• As Prop  Type is a rule, A : Prop and Prop : Type, we can form the type
∀x : A,Prop. We can abbreviate this as A → Prop. This itself has the type Type.

• As Prop Type is a rule, A : Prop and A → Prop : Prop, we can form the type
∀x : A,A → Prop. We can abbreviate this as A → A → Prop. This itself has the
type Type.

• As Type Type is a rule, A → A → Prop : Type and Prop : Type, we can form
the type ∀x : A → A → Prop,Prop. We can abbreviate this as (A → A →
Prop) → Prop. This itself has the type Type.

• As Type Type is a rule, Prop : Type and (A → A → Prop) → Prop : Type, we
can form the type ∀A : Prop, (A → A → Prop) → Prop.

Note the similarity between the first two applications of the rules, and the second two
applications of the rules.

As an exercise, try to use the rules to show that reflexive indeed has the type relpred.
You want to look at each of the rule applications we did, and then do a similar one to
form reflexive.

3.4 Inductive types, part 1
Now that we have the calculus of constructions, the way to get the calculus of inductive
constructions is to add inductive types. Adding inductive types leads to several other
complications, but for now, let’s just add the inductive types.

An inductive type consists of several constructors. Each constructor is either a
term of the inductive type, or a function that returns a term of the inductive type.
The inductive type consists of all the terms that can be made from the constructors,
and only of the terms that can be made from the constructors.

Let’s make our first inductive type, which we’ll call riddle. We’ll say riddle is a Type
that has two constructors, foo and bar. We’ll write it out like this:

riddle : Type =

{
foo : riddle

bar : riddle.

The first constructor says that foo is a term of type riddle. The second constructor says
that bar is a different term of type riddle. Because these are the only two constructors,
the only terms in riddle are foo and bar.

When we defined an inductive type, we gave its constructors. After defining the
type, we also get its partner destructor.10 If we want to define a function with type

10In most sources, these are called recursors or eliminators. We call them destructors as the opposite
of constructors. Coq and Lean both have destructors, but they instead focus on pattern-matching
and fixpoints, which are more convenient to use.
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riddle → T , we have to use the destructor. The idea is that we need to give what
things will get taken to in each possible constructor. That means if we want to specify
a function P , we need to say what P (foo) : T is, and we need to say what P (bar) : T is.
After specifying both of these, we now have a function riddle → T . So its destructor,
which we’ll name ndestruct for reasons to be clear later, is a function with the type

ndestructriddle : ∀T : Type︸ ︷︷ ︸
return type

, T︸︷︷︸
P (foo)

→ T︸︷︷︸
P (bar)

→ riddle → T︸ ︷︷ ︸
the function

.

Let’s define a function riddle → int, that will take foo to 0 and bar to 1. First, we
specify the type that the function will return, which is int, as the first input. This is
the T in the type of ndestructriddle. Second, we specify where foo will go to, which is 0.
Third, we specify where bar will go to, which is 1. After putting these in, we’re left
with a function riddle → T , where T is int, just like we wanted! So

ndestructriddle(int)(0)(1) = x 7→

{
0 if x is foo

1 if x is bar
: riddle → int.

As another example, we can define a function that takes two things of type riddle,
and output bar if at least one of them is bar, and foo otherwise. In this case, we need
two layers of functions. For the first layer, we want to return a function with type
riddle → riddle, and in the second layer, we just return something with type riddle. So

ndestructriddle(riddle → riddle)(y 7→ y)(y 7→ bar) : riddle → riddle → riddle

should work. Please spend a few moments thinking about why it should work. This is
because this evaluates to

x 7→

{
y 7→ y if x is foo

y 7→ bar if x is bar

The reason we named it riddle is because this type might be familiar to you! Here
are better names for this type and its constructors:

bool : Type =

{
false : bool

true : bool.

The function we just defined is the or function on two bools: it returns true if either
one is true, and false otherwise. So it turns out that as soon as we have inductive
types, we already have booleans! As an exercise, think about other boolean operators.

If we want the output of the function to be all of the same type, then the destructor
we have, the non-dependent destructor, is enough. But we can generalize this by
having different output types for different inputs. If we were silly, we could want a
function that brings false to 0 : int, and true to π : real.

This is why, in the dependent destructor, instead of specifying the output type
T , we give a function T : bool → Type that gives us the output type based on the
input. So the dependent destructor has a dependent function type! It has the type

ddestructbool : ∀T : bool → Type︸ ︷︷ ︸
dependent return type

,T (false)︸ ︷︷ ︸
P (false)

→ T (true)︸ ︷︷ ︸
P (true)

→ ∀x : bool,Tx︸ ︷︷ ︸
dependent function

.
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That means if we defined the function

T = x 7→

{
int if x is false

real if x is true
: bool → Type,

perhaps using ndestruct, then the function we want is

ddestructbool(T )(0)(π) = x 7→

{
0 if x is false

π if x is true
: ∀x : bool,Tx.

Please convince yourself that ndestruct is just a special case of ddestruct. The
argument is that ndestruct(T ) = ddestruct(x 7→ T ), for any T : Type. It may not be
clear why we want dependent destructors now, but there’s a good reason that’ll become
clearer later.

3.5 Inductive types, part 2
Let’s create our second inductive type, which we’ll call riddle. We’ll say riddle is a Type
that has two constructors, foo and bar. We’ll write it out like this:

riddle : Type =

{
foo : riddle

bar : riddle → riddle.

The first constructor says that foo is a term of type riddle. The second constructor
says that, if x : riddle, then bar(x) : riddle. Because these are the only two constructors,
the only terms in riddle are those that can be derived from these two rules. This means
all the terms in riddle look like

foo, bar(foo), bar(bar(foo)), bar(bar(bar(foo))), . . . .

What is the type of ndestructriddle? Well, if we want to define a function P , we start
with the output type T : Type. Then we have to specify what P (foo) is. What about
P (bar(x))? Please think for a moment.

A reasonable way to define P (bar(x)) would be based on both x and Px. To compute
Px, then, we need to recurse on x, by following all the steps again. This means we
want a function that, given x and Px, gives us P (bar(x)). The type of this function
will be T → T . Thus

ndestructriddle : ∀T : Type︸ ︷︷ ︸
return type

, T︸︷︷︸
P (foo)

→ (riddle → T → T )︸ ︷︷ ︸
x 7→Px 7→P (bar(x))

→ riddle → T︸ ︷︷ ︸
the function

.

Let’s write a function that doubles the number of bars in a term of type riddle. Say
this function is double. First, T is riddle. Second, double(foo) would remain foo. Third
is the tricky case: if we have the answer for double(x), how can we find double(bar(x))?
Please think about this for a moment.

Let’s say we have x = bar(bar(foo)). Then double(x) = bar(bar(bar(bar(foo)))). And
let’s say we now want the doubled version of bar(x). Well, bar(x) has three xs, and
we want six. We saw double(x) has four xs. So if we take double(x) and add two
bars in front, we get double(bar(x))! That means the function we want, should be
x 7→ p 7→ bar(bar(p)). So please check that

double = ndestructriddle(riddle)(foo)(x 7→ p 7→ bar(bar(p))) : riddle → riddle
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is indeed the function we want. Please check that everything has the right type. Then,
if we wanted to compute double(bar(foo)), check that

double(bar(foo)) = (x 7→ p 7→ bar(bar(p)))(foo)(double(foo))

is the first step of the computation. The fact that the constructor is bar(x) selects the
second part of the destructor. The inputs to that function are x and double(x), which
in this case, are foo and double(foo).

We now ask the reader to think about the type of ddestruct:

ddestructriddle : ∀T : riddle → Type,

T (foo) → (∀x : riddle,Tx → T (bar(x))) → ∀x : riddle,Tx.

Mentally label each of the parts of this type with what they’re supposed to be. What
is T here? What is ∀x : riddle,Tx → T (bar(x))? Why does this work?

The reason we named it riddle is because this type might be familiar to you! Here
are better names for this type and its constructors:

nat : Type =

{
O : nat

S : nat → nat.

These are the natural numbers, where O is zero, and, say, S(S(SO)) is three. The
letter S is chosen to stand for “successor”, so adding S in front of a nat gives the next
natural number. Then double indeed doubles a nat.

Now that we have nat, let’s define add on it. It’s easier to start with the special case
add(x), where we’re adding x to some nat. Please check that this works:

add(x) = ndestructnat(nat)( x︸︷︷︸
add(x)(O)

)( y 7→ p 7→ Sp︸ ︷︷ ︸
y 7→ add(x)(y) 7→ add(x)(Sy)

) : nat → nat

This means that

add = x 7→ ndestructnat(nat)(x)(y 7→ p 7→ Sp) : nat → nat → nat.

3.6 Curry–Howard, part 4

simplicio: Inductive types sure are cool.
salviati: Truly!
simplicio: But we haven’t talked about Curry–Howard in a while. I really want to

know: what’s the logical interpretation of all of this? We talked about how π : real
corresponds to “π is a proof that there exists a real number.” And sure, I guess it
makes sense that O : nat is “O is a proof that there is a natural number.” But
what about S : nat → nat?

salviati: What about S : nat → nat? It is a proof that “there is a natural number”
implies “there is a natural number.”

simplicio: Not a very exciting fact.
salviati: No, not really. It turns out that inductive types are better when it comes

to defining things we can use Curry–Howard with. Consider, for example, our
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previous predicate even(n). Let’s say we wanted to define even : nat → Prop as
an inductive type. How would we do that?

simplicio: Well, to define an inductive type, we need to define constructors. Construc-
tors are things of a given type we say exist. So I guess one reasonable constructor
would be evenO : even(O).

salviati: Yes, that makes sense. This means that the term evenO is a proof that
even(O). Now how could we get things like even(S(S(S(SO))))?

simplicio: Hm. I guess we can do something similar to what we did for nat. Kind of
like, if we knew even(x), we want to say even(S(Sx)). Would the other constructor
be evenSS : even(x) → even(S(Sx))?

salviati: Close! You need to define what x is.
simplicio: Right, evenSS : ∀x : nat, even(x) → even(S(Sx)).
salviati: Yes, exactly. That gives us this definition:

even : nat → Prop =

{
evenO : even(O)

evenSS : ∀x : nat, even(x) → even(S(Sx)).

simplicio: That actually makes a lot of sense! The first constructor is kind of like an
axiom, saying “zero is even.” The second constructor is another axiom, saying
“for all natural numbers x, if x is even, then S(Sx) is also even.”

salviati: Using this inductive type, how would you prove that S(S(S(SO))) is even?
simplicio: Well, we need something of the type even(S(S(S(SO)))). We know

that evenO : even(O). By applying evenSS, we get that evenSS(O)(evenO) :
even(S(SO)). And then we apply it again, giving us

evenSS(S(SO))(evenSS(O)(evenO)) : even(S(S(S(SO)))).

salviati: Right. By Curry–Howard, this corresponds to the following proof:
• We know that O is even by evenO.
• From evenSS applied to O, because O is even, we know S(SO) is also even.
• From evenSS applied to S(SO), because S(SO) is even, we know S(S(S(SO)))

is also even.

simplicio: That’s neat. But I wanted to prove less obvious things.
salviati: Alright then. Let’s go about proving ∀x : nat, add(O)(x) = x.
simplicio: Wait, but isn’t that obvious?
salviati: Not at all. By substituting O into add, we get

add(O) = ndestructnat(nat)(O)(y 7→ p 7→ Sp) : nat → nat.

What does this mean, again?
simplicio: Hm. This means add(O) is a function that takes some nat. If it’s O, the

result is O, which is what we want, so that’s fine. Otherwise, it’s Sx for some x.
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Then the result will have to depend on what add(O)(x) is. And then the result of
that will depend on whether x is O or not. . .

salviati: Looks like you’re getting stuck in a loop.
simplicio: Do we need induction here? I suppose we need induction. The “nor-

mal” proof would be, because add(O)(x) = x by inductive hypothesis, then
add(O)(Sx) = Sadd(O)(x) = Sx, as desired. How do we do induction, then?

3.7 Curry–Howard, part 5
Recall ddestructnat:

ddestructnat : ∀T : nat → Type,

TO → (∀x : nat,Tx → T (Sx)) → ∀x : nat,Tx.

This should be read like this: “If T is a function from naturals to types, and we give
something of type TO, and for all x, we give a function that changes something of type
Tx to something of type T (Sx), then we have a function from each natural x to Tx.”

This is restricted in the sense that T : nat → Type. What if we wanted to have
something nat → Prop? Thankfully, as Prop : Type, a special case of ddestructnat is
what we’ll call pdestructnat, where we have P : nat → Prop instead. Here, the p in the
name stands for Prop:

pdestructnat : ∀P : nat → Prop,

PO → (∀x : nat,Px → P (Sx)) → ∀x : nat,Px.

This should be read like this: “If P is a proposition about naturals, and we prove PO,
and for all x, we prove Px implies P (Sx), then P is true for all naturals.”

Yes, propositions are types. These types all lie in Prop. But we want to maintain
the difference between Prop, which in a sense are “small types”, and Type, which are
“big types”. This is for technical reasons we won’t talk about until later.

Going back to pdestructnat, we see it’s the induction principle for the natural numbers.
The fact that we can do induction on inductive types is why they’re called inductive
types in the first place. Let’s get back to Salviati and Simplicio, as they use this to
prove add(O)(x) = x.
salviati: Step back from thinking about how to do induction. Propositions are types.

How do we prove a proposition?
simplicio: We write down a term with the type we want to prove.
salviati: Right. We want to prove ∀x : nat, add(O)(x) = x. Think back to BHK.

What kind of term is this? What does it do?
simplicio: This has to be a function. The function takes in any x : nat, and returns

a term with the type add(O)(x) = x. Wait a second. I don’t think we have any
terms with = in their type.

salviati: No, no we don’t. We’ll have to make some. Let’s use eq, to remind us that
this is a predicate we’re defining. We’ll need to come up with something that
gives us predicates of the type eq(x)(y). How do we define it? When’s the last
time we had to define a predicate?
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simplicio: We defined even using an inductive type. So I guess we can define eq using
an inductive type. I guess the really important constructor is eq(x)(x) for all x.
We’ll see if we can get by with that. So, this definition?

eq : nat → nat → Prop =
{
reflexivity : ∀x : nat, eq(x)(x).

salviati: Sure. Alright, back to the problem. We need a function that takes any
x : nat, and returns a term with the type eq(add(O)(x))(x). In particular, we
need a function that goes from nat to something else.

simplicio: Ah, so we need a destructor! The proof should be something of the form

pdestructnat(x 7→ eq(add(O)(x))(x))(something)(something).

So this is why we wanted to have the more generally typed version of the destructor.
The output type we want depends on what x is.

salviati: What are the somethings? What are their types?
simplicio: Oh! Let me annotate it:

pdestructnat(· · · )( something︸ ︷︷ ︸
eq(add(O)(O))(O)

)( something︸ ︷︷ ︸
∀x: nat, eq(add(O)(x))(x)→ eq(add(O)(Sx))(Sx)

).

salviati: Alright. Now let’s construct terms of those types.
simplicio: Well, for the first one. The term add(O)(O) just simplifies to O, so we

only need something of the type eq(O)(O), right? And a term of that type would
be reflexivity(O) : eq(O)(O)!

salviati: Yes! We can simplify terms and it’ll stay the same. That fills in the blank
for the first something. What about the second something? We need a function
with the type ∀x : nat, eq(add(O)(x))(x) → eq(add(O)(Sx))(Sx).

simplicio: We start with x 7→ p 7→, so p : eq(add(O)(x))(x). We need a term with
type eq(add(O)(Sx))(Sx). Now how do we deal with add(O)(Sx)?

salviati: Well, recall the definition for add(O). We’re in the second case, where
we have Sx. The first input’s x, the second input, which is p, is the result for
add(O)(x). The result is Sp, which is. . .

simplicio: Oh, Sadd(O)(x). Alright. So that means add(O)(Sx) simplifies to
Sadd(O)(x). We need to produce a term of the type eq(Sadd(O)(x))(Sx). We
have p, which is a term of the type eq(add(O)(x))(x). Hm. I’m not sure how to
do this. I think I want a proposition about eq. Something like, eq(x)(y) means
eq(fx)(fy), for a function f .

salviati: Sure. For now, let’s add that as a constructor for eq, and then we can get
back to proving it later. Here:

eq : · · · =


reflexivity : ∀x : nat, eq(x)(x)

fequal : ∀x : nat,∀y : nat,

eq(x)(y) → (∀f : nat → nat, eq(fx)(fy)).
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simplicio: Alright. So we have p : eq(add(O)(x))(x). That means that

fequal(add(O)(x))(x)(p)(S) : eq(Sadd(O)(x))(Sx).

salviati: So what’s our final proof?
simplicio: Okay, this is pretty long. Unsurprising, I guess, given that it has to do all

the work of a paper proof. But I’m pretty sure this is it:

pdestructnat(x 7→ eq(add(O)(x))(x))

(reflexivity(O))

(x 7→ p 7→ fequal(add(O)(x))(x)(p)(S))

:∀x : nat, eq(add(O)(x))(x).

salviati: Yeah. To summarize, we learned that each of the constructors of an
inductive type correspond to an axiom about that type. We can do induction on
inductive types—that’s why it’s called an inductive type. We also learned that
the destructor isn’t just used for defining functions from an inductive type, it’s
also used for induction.

These inductive proofs are really tricky and somewhat tedious to write on paper,
especially compared to the previous CurryHoward things we’ve been doing, but I think
it’s instructive to work through one of these at least once in your life.

Proof assistants are called proof assistants because they help in making a lot of this
work simpler. They keep track of the “somethings” that need to be filled in, and check
that they have the types that they should have. Type theory provides a very natural
language for this, not only giving us a good basis for formalizing what a proof means,
but making it amenable to using a computer to work out.
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4 Technical issues
4.1 Annotated types
We now dive into technical details for inductive types. We mentioned earlier that we’ll
talk about the proof of fequal, so we’ll go through it here. In the process, we’ll make
the difference between ddestruct, the destructor that goes → Type, and pdestruct, the
destructor that goes → Prop, even clearer.

Recall our definition for even:

even : nat → Prop =

{
evenO : even(O)

evenSS : ∀x : nat, even(x) → even(S(Sx)).

This is a different kind of inductive type, one called an annotated (inductive) type.
This is because, instead of defining something in A, we define something · · · → A.

As another example of an annotated type, here’s inttup, from earlier. We want
inttup(3) to be the type of tuples with 3 integers. We can now define these using
annotated types:

inttup : nat → Type =

{
tupO : inttup(O)

tupS : ∀x : nat, inttup(x) → int → inttup(Sx).

The tuple (−1,−2,−3) would now be encoded as

tupS(2)(tupS(1)(tupS(0)(tupO)(−1))(−2))(−3).

Here is its ndestruct, with annotations indicating the function P :

ndestructinttup : ∀T : Type︸ ︷︷ ︸
return type

, T︸︷︷︸
P (tupO)

→

(∀x : nat, inttup(x) → T → int → T )︸ ︷︷ ︸
x 7→ t 7→Pt 7→ a 7→P (tupS(x)(t)(a))

→ ∀x : nat, inttup(x) → T︸ ︷︷ ︸
the function

.

So, if we had some function intplus : int → int → int, we can write a function total that
takes the total of an inttup:

total = ndestructinttup( int︸︷︷︸
return type

)( 0︸︷︷︸
total(tupO)

)(x 7→ t 7→ T 7→ a 7→ intplus(T )(a)︸ ︷︷ ︸
x 7→ t 7→ total(t) 7→ a 7→ total(tupS(x)(t)(a))

)

: ∀x : nat, inttup(x) → int.

Similarly, we can write its ddestruct. The tricky thing is that the dependent output
type, T , wouldn’t just be inttup(x) → Type. It needs to know what x is! So it’s

ddestructinttup : ∀T : (∀x : nat, inttup(x) → Type),

TO(tupO) →
(∀x : nat,∀t : inttup(x),Txt → ∀a : int,T (Sx)(tupS(x)(t)(a))) →
∀x : nat, ∀t : inttup(x),Txt.

The pdestruct would be the same, except with Type changed to Prop.

31



Type Theory by Example Carl Joshua Quines

In the particular case of · · · → Prop, we call it an inductive predicate, because
it’s a predicate that’s also an inductive type. So even is an inductive predicate. The
thing about inductive predicates is that they don’t have ndestruct or ddestruct. As
predicates lie in · · · → Prop, and Prop : Type, for technical reasons, we can’t have a
function that goes “up” to Type. For even more technical reasons, the pdestruct looks
slightly different for inductive predicates. Here’s the pdestruct for even:

pdestructeven :∀P : nat → Prop,

PO → (∀x : nat, even(x) → Px → P (S(Sx))) → ∀x : nat, even(x) → Px.

This should be read as “If P is a proposition about naturals, and we prove PO, and
for all x, we prove that Px and x being even implies P (S(Sx)), then P is true for all
even naturals.”

In particular, note that P isn’t about even(x), because that itself is a proposition.
Instead, P is about x, the input to the predicate even. This is in contrast to the
destructors for our other inductive types, like ddestructinttup, where T gets all the
information that goes into constructing the inductive type.

We now recall the definition for eq:

eq : nat → nat → Prop =
{
reflexivity : ∀x : nat, eq(x)(x),

and write down its pdestruct:

pdestructeq :∀P : nat → nat → Prop,

(∀x : nat,Pxx) → ∀x : nat,∀y : nat, eq(x)(y) → Pxy.

This now allows us to write a very short proof of fequal. It is simply

pdestructeq(∀x : nat, ∀y : nat, ∀f : nat → nat, eq(fx)(fy))(reflexivity(fx)).

We ask the reader to verify that it works. As further exercise, you can try to prove
theorems like ∀x : nat,∀y : nat, eq(add(x)(y))(add(y)(x)), or ∀x : nat, even(add(x)(x)),
or even ∀x : nat, even(x) → ∃y : nat, eq(x)(add(y)(y)).

4.2 Parametrized types
Now that we’ve written inttup, we can try to write tup, a generalized version of inttup.
We want, say, tup(int)(3) to be the type of tuples of 3 integers. Here’s an attempt to
define it with an annotated type:

tup : Type → nat → Type ={
tupO : ∀T : Type, tup(T )(O)

tupS : ∀T : Type, ∀x : nat, tup(T )(x) → T → tup(T )(Sx).

But there’s a problem with this definition. Let’s say you wanted to write a total
function on tup(int). You wouldn’t actually be able to do this, because ndestructint
requires whatever function you’re defining to work on all possible tups, including
things like tup(bool), for example.
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Instead, we create a parametrized (inductive) type:

tup : Type → nat → Type =

∀T : Type,

{
tupO : tup(T )(O)

tupS : ∀x : nat, tup(T )(x) → T → tup(T )(Sx).

Now, tup(int) is its own inductive type, tup(bool) is its own inductive type, and so on.11

Note that tupO and tupS still take T as an input. But it differs from the previous one
in that the destructor is different, where there is only a single ∀T on the outside, rather
than multiple ∀T s inside each part of the destructor. Again, annotations indicate the
function P :

ndestructtup : ∀T : Type︸ ︷︷ ︸
tup type

, ∀R : Type︸ ︷︷ ︸
return type

, R︸︷︷︸
P (tupO(T ))

→

(∀x : nat, tup(T )(x) → R → T → R)︸ ︷︷ ︸
x 7→ t 7→Pt 7→ a 7→P (tupS(T )(x)(t)(a))

→ ∀x : nat, tup(T )(x) → R︸ ︷︷ ︸
the function

.

With annotated types, we now have all the ingredients to build up pretty much
everything from scratch. For example, here is the sum type:

sum : Type → Type → Type = ∀A : Type, ∀B : Type,

{
suml : A → sum(A)(B)

sumr : B → sum(A)(B).

The first constructor, suml, says that if you have something of type A, then you can
create something of type sum(A)(B). Similarly, the second constructor, sumr, says that
if you have something of type B, then you can create something of type sum(A)(B).
That means anything of type sum(A)(B) is either an object of type A or of type B,
which is exactly what we want the sum type to be.

As another example, consider ∃x : S,Ax. Here, note that S : Type and A : S → Prop.
We can define exists(S)(A) with a parametrized type:

exists : ∀S : Type, (S → Prop) → Prop =

∀S : Type,∀A : S → Prop,
{
example : ∀x : S,Ax → exists(S)(A).

The only constructor, example, says that “for all x, if Ax, then exists(S)(A).” The
destructor for exists could then give us that x. In particular, the function

ddestructexists(S)(A)(x 7→ A 7→ x) : exists(S)(A) → S

takes a claim exists(S)(A) and returns x : S such that Ax : Prop.
Annotated types are also the proper way to define eq, to extend over a general type

T rather than just nat. In this manner we can build up all the mathematics we’d
reasonably want. We encourage the reader to think about defining ≤, and proving
things like ∀x : nat,∀y : nat,x ≤ add(x)(y).

11There are technicalities here. We’re not quite allowed to use Type to construct another Type, for
reasons we’ll explain later. But we’ll ignore that for now.
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4.3 Constructors
Despite all this discussion, we’ve still hand-waved a lot of details about how exactly
inductive types can be made.

There are genuine conditions on the constructors for inductive types. In order for a
constructor of a type T to make sense, they have to be things that return T somehow.
So A → T can be a constructor for T , but T → A cannot be a constructor for T .

Even more important is that not anything can be a constructor for T , just because
it returns T . There’s the requirement that the occurrences of T be strictly positive.
That means that T cannot appear in an input to an input of a constructor, but it can
appear anywhere else. In a constructor of type

(∀ab : A → B,C → D) → (∀e : E,F ) → G → H,

the strictly positive positions are D, F , G, and H.
The reason we have this requirement is because without it, we wouldn’t have

well-formed inductive types. That is, we can define inductive types that lead to
contradictions. The simplest example is a constructor like c : (T → ⊥) → T . If we
allowed this constructor, then we can write a function f : T → (T → ⊥) using the
destructor. Now t 7→ ft : T → ⊥, and c(t 7→ ft) : T and thus (t 7→ ft)(c(t 7→ ft)) : ⊥,
and we have a contradiction.

If we follow these rules for making constructors, we do get well-formed inductive
types. Here, “well-formed” means that we can do induction on them: we can take
something formed by constructors, and get something “smaller and smaller”, until
eventually we reach a “base case”. The reasoning for this is technical, so we’ll skip it.

Given well-formed constructors, another technicality is how we form the correspond-
ing parts of the destructor. We focus on ndestruct, because ddestruct is similar. Let’s
take this example constructor:

c = (∀ab : A → B,C → D) → (∀e : E,T ) → T → T ,

and write its corresponding part of the destructor. Let R be our return type. First,
we split up the outermost →s, and work on each input separately, from left to right:

• The first input has no T s at all, so it carries over entirely.
• The second input has a T , so it gets turned to (∀e : E,T ) → ∀e : E,R. We carry

the original, then carry it, changing T to R.
• The third input has a T , so it gets turned to T → R.
• The last one is the output of the constructor, which is always turned to R.

The corresponding part of the destructor would have the type

(∀ab : A → B,C → D)︸ ︷︷ ︸
x

→ (∀e : E,T )︸ ︷︷ ︸
y

→ (∀e : E,R)︸ ︷︷ ︸
e 7→P (ye)

→ T︸︷︷︸
z

→ R︸︷︷︸
Pz

→ R︸︷︷︸
P (cxyz)

,

where we’ve annotated each input assuming the function was P .
There are again technical issues here. We assume that T is · · · → Type, because if

T was · · · → Prop, the destructor would look slightly different. It is in inductive types
that the difference between Prop and Type becomes more felt, as consequences of the
relationship Prop : Type.

It is also possible for there to be mutually inductive types, which adds another
layer to the technicalities. These allow several inductive types to have each other
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as constructors. Checking that these are well-formed requires formulating a slightly
different kind of strict positivity.

There are also things known as co-inductive types. Inductive types have to reach a
“base case”, but co-inductive types remove this restriction. As I understand it, the
theory of inductive types is still relatively young compared to the rest of type theory.

4.4 Universes
We’ve already run into some difficulties thinking about Prop and Type and the difference
between them, that we’ve mostly swept away. It is now time to think about these
head-on. Recall our definition of pure type systems. Part of the rules say that, if
A B is a rule, and A : A and B : B, then ∀a : A,B is a type. Consider:

id = A 7→ x 7→ x : ∀A : Prop,A → A.

This is a perfectly normal function. We outlined in the section on pure type systems
how to create this function using the rules. The two steps I want to highlight are how
the type is made. I’ll reproduce them here, with the thinking behind:

• We want to form A → A. Well, A : Prop and A : Prop, so we need the rule
Prop Prop. We do! So:

– As Prop Prop is a rule, A : Prop and A : Prop, we can form A → A : Prop.

• We want to form ∀A : Prop,A → A. Well, Prop : Type and A → A : Prop, from
earlier. So we need the rule Type Prop. We do! So:

– As Type  Prop is a rule, Prop : Type and A → A : Prop, we can form
∀A : Prop,A → A.

As we mentioned earlier, the ∀A : Prop here quantifies over all propositions, including
itself! This means that Prop is an impredicative sort, as Props themselves can quantify
over Props. The rule Type Prop is what allows this.

Now consider this function:

id? = A 7→ x 7→ x : ∀A : Type,A → A.

This may seem like an okay function, but if we try to apply the same process, we run
into a snag. We have A → A : Type, good so far. Then, to produce ∀A : Type,A → A,
we’d need the type of Type. But the problem is that Type doesn’t have a type!

How do we patch this up? The impulse is to say Type : Type. But this runs into
a problem, where we can derive a contradiction, by using the ideas from Russell’s
paradox. Let’s create this inductive type called box:

box : Type =
{
filtermap : ∀T : Type, (T → Prop) → (T → box) → box.

This is a kind of inductive type we’ve accepted so far. It actually implicitly uses
Type : Type, because we are using T , which is a Type, to construct box, which also lies
in Type. Something like filtermap(T )(P )(F ) is intended to be the box that contains
all Ft : box for all t : T that satisfy Pt : Prop.

We can now write what it means for B : box to be inside another box:

inside(B) = ndestructbox(Prop)(T 7→ P︸︷︷︸
T →Prop

7→ F︸︷︷︸
T → box

7→ exists(T )(t 7→ Pt ∧ eq(B)(Ft))).
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Here we use the exists inductive type from earlier, as well as ∧, which we could define
with an inductive type.12 Now, define

russell = filtermap(box)(t 7→ ¬inside(t)(t))(t 7→ t).

It is possible to prove that, given a box B : box, it’s equivalent that ¬inside(B)(B)
and inside(B)(russell). The forward direction follows from definition, after simplifying.
In the backward direction, we have a proof that inside(B)(russell), which simplifies
to exists(T )(t 7→ ¬inside(t)(t) ∧ eq(B)(t)), and using destructors to replace t with B
yields the conclusion we want.

Given these, we now take B as russell and get both ¬inside(russell)(russell) and
inside(russell)(russell), which gives ⊥, a contradiction. So saying that Type : Type,
while it seems nice, leads to a bad type theory.13

The way this is fixed, in the calculus of inductive constructions, is with universes.
Along with Prop, we create the universe of sorts Type0,Type1,Type2, . . ., one for each
natural number. We also add Set, as a “small type” that is different from Prop. This
is the pure type system of the calculus of inductive constructions:

• The sorts are Set,Prop,Type0,Type1,Type2, . . ..
• The relationships are Set : Type0, Prop : Type0, and Typei : Typei+1.
• The rules are:

• Prop Prop,Prop Set,Set Prop, Set Set,
• Typei  Prop,
• and the special rule Typei  Typej , where we actually assign the result

with type Typemax{i,j} instead of just Typej .

In the full calculus, instead of doing a bunch of definitions in Type, we mostly put
our definitions in Set, unless we really need to go up to Type. Also note that the only
sorts that can  Type are Types in the first place.

Let’s talk about the difference between Prop and Set. Again, let’s consider the
function id:

id = A 7→ x 7→ x : ∀A : Prop,A → A.

The formation for ∀A : Prop,A → A, as Prop : Type0 and A → A : Prop, relies on
Type0  Prop. So this is still fine. Even in this system, Prop is still impredicative. On
the other hand, we can’t write

id = A 7→ x 7→ x : ∀A : Set,A → A.

If we tried to form this type, as Set : Type0 and A → A : Set, we’d need the rule
Type0  Set. But we don’t have that! So we can’t write this function. That’s the big
difference between Set and Prop: Prop is impredicative and Set is not.

Now, what about this version of id?

id = A 7→ x 7→ x : ∀A : Type,A → A.

12A technical note here is that we need a parametrized eq to say this, and this would technically be
eq(box)(B)(Ft). But from here, and for the rest of the write-up, we’ll omit the parameter on eq
due to laziness.

13The reason we don’t have this contradiction with Prop is that the destructor for Prop is different
than the destructor for Type. We can’t repeat this construction in Prop because of that.
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Again, let’s try to form the type. We didn’t put the indices in the Type, because in
practice, we omit the index and check that we can assign indices to make everything
work. So, if we’re making A : Type0, that means A → A : Type0. As Type0 : Type1, we
need the rule Type1  Type0, which we do have. This places ∀A : Type0,A → A : Type1.
In general, we can see that if A : Typei, then ∀A : Typei,A → A : Typei+1.

So this is a good definition, and we can write things like id(nat) and whatever. On
the other hand, we can’t write id(id), because if id takes in A : Typei, the type of id’s
type is Typei+1, and we can’t put Typei+1 into something that takes Typei.

4.5 Equality
Let’s talk about the type theory thing I understand the least, which is the notion of
equality, and how it differs depending on the flavor of type theory you’re using.

We first discuss the difference between intension and extension. And yes, that’s
intension with an ‘s’. Consider these two functions: x 7→ 3(2x + 6) : int → int, and
x 7→ 2(3x+ 9) : int → int. These two functions have a different intension: the way
they compute their results are different, and we can tell that just by looking at it. On
the other hand, we know that these functions have the same extension: for the same
inputs, the functions will give the same outputs.

• First of all, there’s definitional equality, or intensional equality. If we set one
thing to be equal to another, by definition, then they are definitionally equal. So
for example, 2 is definitionally equal to S(SO).

• Looser is computational equality, or judgmental equality. Two things are
computationally equal if they simplify to two things that are definitionally equal.
So for example, (x 7→ x)2 and 2 are computationally equal.

• Even looser is propositional equality, or extensional equality. For example,
add(a)(b) is propositionally equal to add(b)(a). We represented this with eq,
which is of type Prop, which is why it’s called propositional equality.

There are two big flavors of type theory, intensional type theory, and extensional
type theory. Intensional type theory is the one we’ve been building up so far.
Definitional equality is a thing, by how we defined type theory. It is also by definition
that, if two things are computationally equal, we can replace them with one another.
On the other hand, even if things are propositionally equal, we can’t always freely
replace them for each other.

We’ve shown things like fequal, which state that if eq(x)(y), then eq(fx)(fy).
But note that we started with propositional equality, and we ended once again
with propositional equality. Sure, fequal can solve some of our problems with re-
placing x and y within terms. For example, we can use f = t 7→ plus(t)(2) to
show eq(plus(x)(2))(plus(y)(2)). But what happens if they’re in types? Suppose
P : ∀n : nat, inttup(n) → Prop. If you knew ∀a : inttup(x),Pxa, is it true that
∀a : inttup(y),Pya? The answer is yes, but it takes effort to prove it.

In extensional type theory, we add the rule that if things are propositionally
equal to each other, they are also computationally equal to each other. If we’ve
found something of type eq(x)(y), then we can freely replace x for y anywhere. This
makes our previous problem much easier. But it’s also not a rule that means anything
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computationally, unlike our other rules. It also makes type checking undecidable, which
we don’t want for many applications.14

Equality turns out to be an active area of research in type theory, and people are
investigating what it means for two things to be equal. The field of homotopy type
theory arises from taking intensional type theory, interpreting it using homotopy
(whatever that means), and adding the univalence axiom, which is an axiom about
equality. It’s a fascinating field that I wish I knew more about.

4.6 Axioms
There are various strengths of axioms to add to our theory, all equality-related up
until the end:

• There’s unicity of identity proofs. This states that if a : eq(x)(y) and
b : eq(x)(y), then eq(a)(b). Because the only constructor for eq is reflexivity, that
means that all proofs of equality are propositionally equal to reflexivity.

• There’s proof irrelevance. This states that if P : Prop, a : P , and b : P , then
eq(a)(b), or that any two proofs of the same proposition are propositionally equal.
We can derive unicity of identity proofs from this.

• There’s propositional extensionality. This states that if P and Q are Props,
P → Q, and Q → P , then eq(P )(Q), or that equivalent propositions are
propositionally equal. If two propositions imply each other, then they have the
same extension, and that’s how it gets its name. We can derive proof irrelevance
from this.

• There’s predicate extensionality. This states that if P and Q are both
A → Prop, then if ∀x : A,Px → Qx and ∀x : A,Qx → Px, we get eq(P )(Q).
Equivalent predicates are propositionally equal. We can derive propositional
extensionality from this.

• There’s functional extensionality. This states that if f and g are A → B and
∀x : A, eq(fx)(gx), then eq(f)(g). This is the equality of functions we use in set
theory. Propositional extensionality and functional extensionality can be used to
prove predicate extensionality.

• There’s axiom of choice. This states that if R : A → B → Prop, and
∀x : A, exists(B)(y 7→ Rxy), then exists(A → B)(f 7→ ∀x : A,Rx(fx)). This is a
functional way to state the more familiar axiom of choice: R is a family of sets
with x as the indices and y as the elements, and f is the choice function that
associates each index with an element.

• There’s excluded middle. This states that for all P : Prop, either P or ¬P . A
result known as Diaconescu’s theorem states that propositional extensionality,
functional extensionality, and the axiom of choice, imply excluded middle.

So behold, the steady ladder that goes from seemingly “weak” extensionality axioms,
all the way to classical logic. I think Diaconescu’s theorem is really fascinating, and
shows just how “classical” the axiom of choice is.
14I don’t actually have a good example for why we don’t usually do extensional type theory. If you

have any you should tell me.
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4.7 What next?
If you’re interested in learning more, probably a good next step would be to “properly”
learn how type theory is built. There’s the concepts of contexts and judgments, and it’s
nice to read the conversion rules and typing rules in full rigor. There’s the metatheory,
with formal semantics and Heyting algebras and proofs as to when type checking is or
isn’t decidable. There are proof assistants like Coq and Lean in active development
that use the theory we’ve built. There’s homotopy type theory, which stretches out
the Curry–Howard isomorphism even more.

And you can learn all of these by doing some more reading:
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